Bài 6: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

KL

1.PTDTTNT

a)(2x+1)*(x+1)^2*(2x+3)-18

b) (x^2+4x+3)*(x^3+12x+35)+15

c0(x-3)*(x-5)*(x-6)*(x-10)-24x^2

NT
27 tháng 5 2022 lúc 20:29

a: \(\left(2x+1\right)\left(2x+3\right)\left(x+1\right)^2-18\)

\(=\left[\left(2x+2\right)^2-1\right]\left(x+1\right)^2-18\)

\(=4\left(x+1\right)^4-\left(x+1\right)^2-18\)

\(=4\left(x+1\right)^4-9\left(x+1\right)^2+8\left(x+1\right)^2-18\)

\(=\left(x+1\right)^2\left[4\left(x+1\right)^2-9\right]+2\left[4\left(x+1\right)^2-9\right]\)

\(=\left[\left(2x+2\right)^2-9\right]\left[\left(x+1\right)^2+2\right]\)

\(=\left(2x+5\right)\left(2x-1\right)\left(x^2+2x+3\right)\)

b: \(\left(x^2+4x+3\right)\left(x^2+12x+35\right)+15\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+105+15\)

\(=\left(x^2+8x\right)^2+22\left(x^2+8x\right)+120\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

c: \(\left(x-3\right)\left(x-5\right)\left(x-6\right)\left(x-10\right)-24x^2\)

\(=\left(x^2-13x+30\right)\left(x^2-11x+30\right)-24x^2\)

\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+143x^2-24x^2\)

\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+119x^2\)

\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)

\(=\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)\)

Bình luận (0)

Các câu hỏi tương tự
MJ
Xem chi tiết
HL
Xem chi tiết
TN
Xem chi tiết
BC
Xem chi tiết
KN
Xem chi tiết
PH
Xem chi tiết
CC
Xem chi tiết
NA
Xem chi tiết
HQ
Xem chi tiết