Bài 7: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức

NL

1) x^2+2xy+x+2y

2) x^2-10x+25

12) x^3+3x^2+3x+1

13)x^3-8

14)x^3+27

15)x63-1/8

16)x^3-x+y^3-y

17)4x^2-1

18)49x^2-8

LG
1 tháng 11 2017 lúc 16:42

\(1,x^2+2xy+x+2y\)

\(=\left(x^2+2xy\right)+\left(x+2y\right)\)

\(=x\left(x+2y\right)+\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x+1\right)\)

\(2,x^2-10x+25\)

\(=x^2-2.x.5+5^2\)

\(=\left(x-5\right)^2\)

Đợi mk chút ,mk có việc bận ,tối mk làm tiếp nha bn

Bình luận (0)
LG
1 tháng 11 2017 lúc 17:57

\(3,x^3+3x^2+3x+1\)

\(=\left(x^3+1\right)+\left(3x^2+3x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+3x\right)\)

\(=\left(x+1\right)\left(x^2+2x+1\right)\)

\(=\left(x+1\right)\left(x+1\right)^2\)

\(=\left(x+1\right)^3\)

\(4,x^3-8\)

\(=x^3-2^3\)

\(=\left(x-2\right)\left(x^2+2x+4\right)\)

\(5,x^3+27\)

\(=x^3+3^3\)

\(=\left(x+3\right)\left(x^2-3x+9\right)\)

\(6,x^3-\dfrac{1}{8}\)

\(=x^3-\left(\dfrac{1}{2}\right)^3\)

\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)

\(7,x^3-x+y^3-y\)

\(=\left(x^3+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

\(8,4x^2-1\)

\(=\left(2x\right)^2-1^2\)

\(=\left(2x-1\right)\left(2x+1\right)\)

\(9,49x^2-9\)

\(=\left(7x\right)^2-3^2\)

\(=\left(7x-3\right)\left(7x+3\right)\)

Bình luận (2)

Các câu hỏi tương tự
KN
Xem chi tiết
DT
Xem chi tiết
NL
Xem chi tiết
TH
Xem chi tiết
KN
Xem chi tiết
TH
Xem chi tiết
DN
Xem chi tiết
ML
Xem chi tiết
TK
Xem chi tiết