Bài 4: Góc tạo bởi tiếp tuyến và dây cung

MV

1/ Từ điểm M nằm ngoài đường tròn (O), kẻ các tiếp tuyến MB, MD và 1 cát tuyến MAC ( A nằm giữa M và C ). Chứng minh: a/ MD2 = MA. MC b/ AB.CD = AD.BC

NT
3 tháng 2 2021 lúc 23:30

1) Xét (O) có

\(\widehat{ACD}\) là góc nội tiếp chắn \(\stackrel\frown{AD}\)

\(\widehat{MDA}\) là góc tạo bởi tia tiếp tuyến MD và dây cung AD

Do đó: \(\widehat{ACD}=\widehat{MDA}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

hay \(\widehat{MCD}=\widehat{MDA}\)

Xét ΔMCD và ΔMDA có

\(\widehat{MCD}=\widehat{MDA}\)(cmt)

\(\widehat{CMD}\) chung

Do đó: ΔMCD∼ΔMDA(g-g)

\(\dfrac{MC}{MD}=\dfrac{MD}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)

nên \(MD^2=MC\cdot MA\)(đpcm)

Bình luận (0)

Các câu hỏi tương tự
MP
Xem chi tiết
SK
Xem chi tiết
HT
Xem chi tiết
NH
Xem chi tiết
VL
Xem chi tiết
VL
Xem chi tiết
TM
Xem chi tiết
TL
Xem chi tiết
TL
Xem chi tiết