Bài 4: Góc tạo bởi tiếp tuyến và dây cung

NH

Từ điểm A ở ngoài đường tròn (O) vẽ 2 tiếp tuyến AB, AC và cát tuyến AMN của đường tròn đó. Gọi I là trung điểm của dây MN.

a) Chứng minh: Năm điểm A, B, I, O, C cùng nằm trên một đường tròn, xác định tâm và bán kính của đường tròn này.

b) Vẽ đường kính BD. Chứng minh CD song song với OA.

NT
17 tháng 1 2022 lúc 22:35

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

hay A,B,O,C cùng thuộc một đường tròn(1)

Xét tứ giác OIAC có 

\(\widehat{OIA}+\widehat{OCA}=180^0\)

Do đó: OIAC là tứ giác nội tiếp

hay O,I,A,C cùng thuộc một đường tròn(2)

Từ (1) và (2) suy ra A,B,O,I,C cùng thuộc một đường tròn

b: Xét (O) có 

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC
hay A nằm trên đường trung trực của BC(3)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(4)

Từ (3) và (4) suy ra OA⊥BC(5)

Xét (O) có

ΔBCD nội tiếp

BD là đường kính

Do đó: ΔBCD vuông tại C

hay BC⊥CD(6)

Từ (5) và (6) suy ra CD//OA

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
HT
Xem chi tiết
TL
Xem chi tiết
PA
Xem chi tiết
SK
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
LQ
Xem chi tiết
H24
Xem chi tiết