Những câu hỏi liên quan
HF
Xem chi tiết
KT
22 tháng 3 2018 lúc 20:57

1)  \(\left(a+b\right)^2\left(b+c\right)^2\ge4abc\left(a+b+c\right)\)

2)  Cho   \(a+b=2.\)CMR:   

a)  \(a^2+b^2\ge2\)

b)  \(a^4+b^4\ge2\)

c)  \(a^8+b^8\ge2\)

3)  \(a+b+c+d=2.\) CMR   \(a^2+b^2+c^2+d^2\ge1\)

Bình luận (0)
KH
Xem chi tiết
LH
7 tháng 6 2021 lúc 17:23

a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b

Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)

Dấu = xảy ra <=> a=b=1

b) Áp dụng BĐT bunhiacopxki có:

\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)

\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)

\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)

\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)

c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)

Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)

Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)

Áp dụng (1) vào S ta được:

\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)

Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)

\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)

\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)

Bình luận (0)
MD
Xem chi tiết
NT
20 tháng 8 2017 lúc 15:48

mình ko biết, bạn k nha

Bình luận (0)
NL
20 tháng 8 2017 lúc 15:51

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa

Bình luận (0)
MD
20 tháng 8 2017 lúc 15:57

Nàng công chúa lạnh lùng bạn biết ko 

Bình luận (0)
DT
Xem chi tiết
Xem chi tiết
TH
Xem chi tiết
HN
3 tháng 8 2018 lúc 15:40

\(A^2=\left(x+2y+3z\right)^2\le\left(1+4+9\right)\left(x^2+y^2+z^2\right)=14.126=1764\)

\(\Leftrightarrow-42\le A\le42\)

Bình luận (0)
ND
3 tháng 8 2018 lúc 15:45

Áp dụng BĐT Bunhiacopski, ta có:

\(F^2=\)\(\left(x+2y+3z\right)^2\le\left(1^2+2^2+3^2\right)\left(x^2+y^2+z^2\right)\)

\(\Rightarrow F^2=\left(x+2y+3z\right)^2\le1764\)

\(\Rightarrow-42\le F\le42\)

Bình luận (0)
ND
3 tháng 8 2018 lúc 15:27

Á

Bình luận (0)
NT
Xem chi tiết
KN
10 tháng 9 2020 lúc 8:32

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TN
8 tháng 12 2021 lúc 16:15

Đểu thật

Bình luận (0)
 Khách vãng lai đã xóa

mk ko ghõ đc

Bình luận (0)
 Khách vãng lai đã xóa
TN
8 tháng 12 2021 lúc 16:16

Chắc do lỗi rồi

Câu trả lời của bạn đã được quản trị viện duyệt rồi nhé

HT

Bình luận (0)
 Khách vãng lai đã xóa