chứng minh bất đẳng thức tìm gtln,gtnn
Cho mk một số bài toán khó về chứng minh bất đẳng thức và tìm GTLN, GTNN với. Nhớ ghi thêm cách giải sơ lược nha.
1) \(\left(a+b\right)^2\left(b+c\right)^2\ge4abc\left(a+b+c\right)\)
2) Cho \(a+b=2.\)CMR:
a) \(a^2+b^2\ge2\)
b) \(a^4+b^4\ge2\)
c) \(a^8+b^8\ge2\)
3) \(a+b+c+d=2.\) CMR \(a^2+b^2+c^2+d^2\ge1\)
a, Chứng minh bất đẳng thức a2+b2+2 ≥ 2(a+b)
b,Cho hai số thực x,y thỏa mãn điều kiện: x^2+y^2 = 1. Tìm GTLN và GTNN của x+y
c, Cho a,b > 0 và a+b = 1. Tìm GTNN của S=\(\dfrac{1}{ab}\)+1/a2+b2
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
Áp dụng bất đẳng thức cô si để
a)) tìm GTNN của y=x^2 +2/X^3
b) TÌM GTLN của y= x^2/[(x^2+2)^3]
Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa
cho x≥0,y≥0 thỏa mãn x+y=1
tìm GTLN, GTNN của P=x/(y+1) + y/(x+1) bằng cách sử dụng bất đẳng thức
1.cho x,y thỏa mãn: x² + y² = 1. Chứng minh rằng: -5 ≤ 3x+4y ≤5
2. cho x,y thỏa mãn : x² +y² =6 . Tìm GTLN và GTNN của P=x-√(5y)
Dùng Bất Đẳng Thức Bunhia Copski ( BCS ) nha các bạn ^^
cho x2+y2+z2 = 126
Tìm GTLN, GTNN của A = x + 2y + 3z
( bất đẳng thức BunhiAcopski )
Giúp mik nha!!!
\(A^2=\left(x+2y+3z\right)^2\le\left(1+4+9\right)\left(x^2+y^2+z^2\right)=14.126=1764\)
\(\Leftrightarrow-42\le A\le42\)
Áp dụng BĐT Bunhiacopski, ta có:
\(F^2=\)\(\left(x+2y+3z\right)^2\le\left(1^2+2^2+3^2\right)\left(x^2+y^2+z^2\right)\)
\(\Rightarrow F^2=\left(x+2y+3z\right)^2\le1764\)
\(\Rightarrow-42\le F\le42\)
Tìm Min (GTNN) (DẠNG TOÁN ÁP DỤNG HÀNG ĐẲNG THỨC ĐỂ TÌM GTLN,GTNN)
A= x mũ 2 - 6x + 10
B= 4x mũ 2 - 4x + 25
C= 3x mũ 2 + 9x + 12
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
Bất đẳng thức Cô - si là gì
Cách chứng minh bất đẳng thức Cô - si tối giản nhất ?
mk ko ghõ đc
Chắc do lỗi rồi
Câu trả lời của bạn đã được quản trị viện duyệt rồi nhé
HT