Những câu hỏi liên quan
MN
Xem chi tiết
MN
Xem chi tiết
LH
2 tháng 6 2021 lúc 12:51

Do M và N lần lượt là trung điểm của cung AB,AC => \(sđ\stackrel\frown{AN}=sđ\stackrel\frown{NC};sđ\stackrel\frown{AM}=sđ\stackrel\frown{MB}\)

Có \(\widehat{AHK}=\dfrac{1}{2}\left(sđ\stackrel\frown{AN}+sđ\stackrel\frown{MB}\right)=\dfrac{1}{2}\left(sđ\stackrel\frown{NC}+sđ\stackrel\frown{AM}\right)\)\(=\widehat{AKH}\)

=> Tam giác AHK cân tại A

Ý A

Bình luận (0)
MN
Xem chi tiết
LH
31 tháng 5 2021 lúc 21:25

\(\left\{{}\begin{matrix}mx-y=3\\2x+my=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-3\left(1\right)\\2x+my=9\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2)\(\Rightarrow2x+m\left(mx-3\right)=9\)\(\Leftrightarrow x\left(2+m^2\right)=9+3m\) \(\Leftrightarrow x=\dfrac{9+3m}{2+m^2}\)

\(\Rightarrow y=mx-3=\dfrac{m\left(9+3m\right)}{2+m^2}-3=\dfrac{9m-6}{2+m^2}\)

\(P=3x-y=\dfrac{3\left(9+3m\right)}{2+m^2}-\dfrac{9m-6}{2+m^2}\)\(=\dfrac{33}{2+m^2}\)

Để \(P\in Z\Leftrightarrow2+m^2\in Z\)  \(\Rightarrow2+m^2\inƯ\left(33\right)\) mà \(m^2+2\ge2\forall m\) \(\Rightarrow2+m^2\inƯ\left(33\right)=\left\{11;33\right\}\)

TH1: \(2+m^2=11\Leftrightarrow m^2=9\Leftrightarrow\left[{}\begin{matrix}m=3\left(tm\right)\\m=-3\left(L\right)\end{matrix}\right.\)

TH2:\(2+m^2=33\Leftrightarrow m^2=31\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{31}\\m=-\sqrt{31}\end{matrix}\right.\)(ktm)

=> Có 1 giá trị => Ý A

Bình luận (1)
MN
Xem chi tiết
AH
30 tháng 5 2021 lúc 0:33

Lời giải:

Theo đề ta có:

\(\text{sđc(AD)}=\frac{1}{3}\text{sđc(AB)}=\frac{1}{9}[\text{sđc(AB)+sđc(BC)+sđc(CD)}]\)

\(=\frac{1}{9}(360^0-\text{sđc(AD)})\)

\(\Rightarrow \text{sđc(AD)}=36^0\)

\(\widehat{BEC}=\frac{\text{sđc(BC)-sđc(AD)}}{2}=\frac{3\text{sđc(AD)}-\text{sđc(AD)}}{2}=\text{sđc(AD)}=36^0\)

Bình luận (0)
MN
Xem chi tiết
AH
30 tháng 5 2021 lúc 0:28

Lời giải:

HPT \(\Leftrightarrow \left\{\begin{matrix} xy+4x-5y-20=xy+x-4y-4\\ xy-3x+y-3=xy-2x-y+2\end{matrix}\right.\)

\( \Leftrightarrow \left\{\begin{matrix} 3x-y=16\\ -x+2y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{37}{5}\\ y=\frac{31}{5}\end{matrix}\right.\)

Khi đó: \(m+2n=\frac{37}{5}+2.\frac{31}{5}=\frac{99}{5}\)

Bình luận (0)
MN
Xem chi tiết
HP
2 tháng 6 2021 lúc 1:14

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=\left(m-2\right)^2-4\left(m+8\right)>0\\x_1.x_2=m+8>0\\x_1+x_2=m-2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-8m-28>0\\m>-8\\m< 2\end{matrix}\right.\)

\(\Leftrightarrow-8< m< 4-2\sqrt{11}\)

Mà \(m\in Z\Rightarrow m\in\left\{-7;-6;-5;-4;-3;-2\right\}\)

\(\Rightarrow\) Có 6 giá trị nguyên thỏa mãn.

Bình luận (0)
MN
Xem chi tiết
NL
2 tháng 6 2021 lúc 18:56

Do AB bằng cạnh lục giác đều nội tiếp \(\Rightarrow\widehat{AOB}=\dfrac{1}{6}.360^0=60^0\)

\(\Rightarrow\Delta ABC\) đều \(\Rightarrow\left\{{}\begin{matrix}AB=OA=R\\OH=\dfrac{AB\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\end{matrix}\right.\)

Dây CD bằng cạnh tam giác đều nội tiếp \(\Rightarrow\widehat{COD}=\dfrac{1}{3}.360^0=120^0\Rightarrow\widehat{COK}=60^0\)

\(\Rightarrow\left\{{}\begin{matrix}CD=2CK=2OC.sin\widehat{COK}=R\sqrt{3}\\OK=OC.cos\widehat{COK}=\dfrac{R}{2}\end{matrix}\right.\)

\(\Rightarrow HK=OH-OK=\dfrac{R}{2}\left(\sqrt{3}-1\right)\)

\(S=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{R^2}{2}\) (chắc có sự nhầm lẫn trong đáp án, không có hằng số \(\pi\) nào ở đây)

Bình luận (0)
MN
Xem chi tiết
NL
1 tháng 6 2021 lúc 17:27

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên: \(2x_1^2-4mx_1+2m^2-1=0\Leftrightarrow2x_1^2=4mx_1-2m^2+1\)

Thay vào bài toán:

\(4mx_1-2m^2+1+4mx_2+2m^2-9< 0\)

\(\Leftrightarrow4m\left(x_1+x_2\right)-8< 0\)

\(\Leftrightarrow8m^2-8< 0\)

\(\Rightarrow m^2< 1\Rightarrow-1< m< 1\)

Bình luận (0)
MN
Xem chi tiết
NL
1 tháng 6 2021 lúc 17:24

Ta có: \(\widehat{BCD}=\dfrac{1}{2}\widehat{BOD}=20^0\) (góc nội tiếp bằng 1 nửa góc ở tâm cùng chắn BD)

\(\widehat{BEC}=180^0-\widehat{BED}=120^0\)

\(\Rightarrow\widehat{CBA}=180^0-\left(\widehat{BEC}+\widehat{BCD}\right)=40^0\) (tổng 3 góc trong tam giác)

\(\Rightarrow sđ\stackrel\frown{AC}=2\widehat{CBA}=80^0\)

Bình luận (0)
NL
1 tháng 6 2021 lúc 17:24

Hình vẽ (chỉ mang tính chất minh họa):

undefined

Bình luận (0)