Ôn thi vào 10

MN

undefined

mng giải hẳn ra giúp mik nha :"33

LH
31 tháng 5 2021 lúc 21:25

\(\left\{{}\begin{matrix}mx-y=3\\2x+my=9\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=mx-3\left(1\right)\\2x+my=9\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2)\(\Rightarrow2x+m\left(mx-3\right)=9\)\(\Leftrightarrow x\left(2+m^2\right)=9+3m\) \(\Leftrightarrow x=\dfrac{9+3m}{2+m^2}\)

\(\Rightarrow y=mx-3=\dfrac{m\left(9+3m\right)}{2+m^2}-3=\dfrac{9m-6}{2+m^2}\)

\(P=3x-y=\dfrac{3\left(9+3m\right)}{2+m^2}-\dfrac{9m-6}{2+m^2}\)\(=\dfrac{33}{2+m^2}\)

Để \(P\in Z\Leftrightarrow2+m^2\in Z\)  \(\Rightarrow2+m^2\inƯ\left(33\right)\) mà \(m^2+2\ge2\forall m\) \(\Rightarrow2+m^2\inƯ\left(33\right)=\left\{11;33\right\}\)

TH1: \(2+m^2=11\Leftrightarrow m^2=9\Leftrightarrow\left[{}\begin{matrix}m=3\left(tm\right)\\m=-3\left(L\right)\end{matrix}\right.\)

TH2:\(2+m^2=33\Leftrightarrow m^2=31\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{31}\\m=-\sqrt{31}\end{matrix}\right.\)(ktm)

=> Có 1 giá trị => Ý A

Bình luận (1)

Các câu hỏi tương tự
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết