Ôn thi vào 10

MN

undefined

mng giải hẳn ra giúp mik nha :3

NL
1 tháng 6 2021 lúc 17:27

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên: \(2x_1^2-4mx_1+2m^2-1=0\Leftrightarrow2x_1^2=4mx_1-2m^2+1\)

Thay vào bài toán:

\(4mx_1-2m^2+1+4mx_2+2m^2-9< 0\)

\(\Leftrightarrow4m\left(x_1+x_2\right)-8< 0\)

\(\Leftrightarrow8m^2-8< 0\)

\(\Rightarrow m^2< 1\Rightarrow-1< m< 1\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết