\(9x^2-30x+225=0\)
\(9x^2-30x+225=0\)
`9x^2-30x+225=0`
`<=>3x^2-10x+75=0`
<=>2x^2-10x+25+x^2+50=0`
`<=>2(x-5/2)^2+x^2+50+25/2=0`
Vì `2(x-5/2)^2+x^2>=0`
`=>2(x-5/2)^2+x^2+50+25/2>=50+25/2>0`
Vậy PT vô nghiêm
Lag nhẹ
`9x^2-30x+225=0`
`<=>3x^2-10x+75=0`
`<=>2x^2-10x+25+x^2+50=0`
`<=>2(x-5/2)^2+x^2+50+25/2=0`
Vì `2(x-5/2)^2+x^2>=0`
`=>2(x-5/2)^2+x^2+50+25/2>=50+25/2>0`
Vậy PT vô nghiêm
GIẢI PT sau
2x^2 - 6x +1=0
3x^2+ 12x =0
9x^2 - 30x + 225 =0
Bài này khó.... Mấy bạn mà làm đc Mk cảm ơn nhiều nhé
b) <=> 3x(x+4)=0
<=> x=0 hoặc x+4=0 => x=-4
c) <=> 8x2+(x2-30x+225)=0
<=> 8x2+(x-15)=0
mà 8x2 ≥ 0 và x-15≥0
nếu x= 0 => 8x2+(x2-30x+225)≠0 (loại)
nếu x-15=0 => 8x2+(x2-30x+225)≠0 (loại)
vậy pt vô nghiệm
ý a mình ko biết làm xin lỗi nhé
Tìm x
a) \(3x^2+12x-66=0\)
b)\(9x^2-30x+225=0\)
c)\(x^2+3x-10=0\)
d)\(3x^2-7x+1=0\)
e) \(3x^2-7x+8=0\)
a)
a)
=> 3(x + 2)2 - 12 - 66 = 0
=> 3(x + 2)2 - 78 = 0
=> 3(x + 2)2 = 78
=> (x + 2)2 = 26
=> x = \(\sqrt{26}-2\)
b)
=> (3x - 5)2 - 25 + 225 = 0
=> (3x - 5)2 + 200 = 0
=> (3x - 5)2 = -200
9x2 - 30x + 225 không có ngiệmc)=> (x + 1,5)2 - 2,25 - 10 = 0
=> (x + 1,5)2 - 12,25 = 0
=> (x + 1,5)2 = 12, 25
=> x + 1,5 = 3,5
=> x = 2
d)=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\) + 1 = 0
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{37}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{12}\)
=> (x - \(\dfrac{7}{6}\))2 = \(\dfrac{37}{36}\)
=> x = \(\dfrac{\sqrt{37}}{6}+\dfrac{7}{6}=\dfrac{\sqrt{37}+7}{6}\)
e)
=> 3(x - \(\dfrac{7}{6}\))2 - \(\dfrac{49}{12}\)+ 8 = 0
=> 3(x - \(\dfrac{7}{6}\))2 + \(\dfrac{47}{12}\) = 0
=> 3(x - \(\dfrac{7}{6}\))2 = \(-\dfrac{47}{12}\)
KL : Không có ngiệm
Tìm x:
a)9x^2-30x+25=0
b)25x^2-5x+1/4=0
c)9x^2-25=0
d)(2x-1)^2-(3x+2)^2=0
a: \(9x^2-30x+25=0\)
\(\Leftrightarrow3x-5=0\)
hay \(x=\dfrac{5}{3}\)
c: \(9x^2-25=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
a) \(9x^2-30x+25=0\Rightarrow\left(3x-5\right)^2=0\Rightarrow x=\dfrac{5}{3}\)
b) \(25x^2-5x+\dfrac{1}{4}=0\Rightarrow\left(10x-1\right)^2=0\Rightarrow x=\dfrac{1}{10}\)
c) \(9x^2-25=0\Rightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
d) \(\left(2x-1\right)^2-\left(3x+2\right)^2=0\)
\(\Rightarrow\left(2x-1+3x+2\right)\left(2x-1-3x-2\right)=0\)
\(\Rightarrow-\left(5x+1\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
GIẢI CÁC PHƯƠNG TRÌNH TÍCH SAU :
a, 3x2 + 12x - 66 = 0
b, 9x2- 30x + 225 = 0
c, x2 + 3x - 10 = 0
d, 3x2 - 7x + 1 = 0
e, 2x2 - 6x + 1
a) \(3x^2+12x-66=0\)
Ta có \(\Delta=12^2+4.3.66=936,\sqrt{\Delta}=6\sqrt{26}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-12+6\sqrt{26}}{6}=-2+\sqrt{26}\\x=\frac{-12-6\sqrt{26}}{6}=-2-\sqrt{26}\end{cases}}\)
b) \(9x^2-30x+225=0\)
Ta có \(\Delta=33^2-4.9.225=-7011\)
\(\Delta< 0\)nên pt vô nghiệm
c) \(x^2+3x-10=0\)
Ta có \(\Delta=3^2+4.10=49,\sqrt{\Delta}=7\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-3+7}{2}=2\\x=\frac{-3-7}{2}=-5\end{cases}}\)
d) \(3x^2-7x+1=0\)
Ta có \(\Delta=7^2-4.3.1=37,\sqrt{\Delta}=\sqrt{37}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{37}}{6}\\x=\frac{7-\sqrt{37}}{6}\end{cases}}\)
x^3-9x^2+30x-20=0.và 4y^3+6y^2+6y=7tìm p=x^2+xy-2y^2+10x+2y-2017
giải các phương trình sau bằng công thức nghiệm hoặc công thức no thu gọn:
d)\(9x^2+30x+25=0\)
e)\(x^2-4\sqrt{5}x+4=0\)
d, \(\Delta'=225-25.9=0\)pt có nghiệm kép
\(x_1=x_2=\dfrac{-15}{9}=-\dfrac{5}{3}\)
e, \(\Delta'=4.5-4=16>0\)pt có 2 nghiệm pb
\(x_1=2\sqrt{5}-4;x_2=2\sqrt{5}+4\)
d: \(\Leftrightarrow\left(3x+5\right)^2=0\)
=>3x+5=0
hay x=-5/3
e: \(\text{Δ}=\left(4\sqrt{5}\right)^2-4\cdot1\cdot4=80-16=64>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{4\sqrt{5}-8}{2}=2\sqrt{5}-4\\x_2=2\sqrt{5}+4\end{matrix}\right.\)
d, \(\Delta=30^2-9.4.25=0\)
Vậy pt có nghiệm kép:\(x_{1,2}=\dfrac{-b}{2a}=\dfrac{-30}{2.9}=\dfrac{-30}{18}=\dfrac{-5}{3}\)
e, \(\Delta=\left(-4\sqrt{5}\right)^2-4.1.4=80-16=64\)
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4\sqrt{5}+\sqrt{64}}{2.1}=\dfrac{4\sqrt{5}+8}{2}=4+2\sqrt{5}\)
\(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{4\sqrt{5}-\sqrt{64}}{2.1}=\dfrac{4\sqrt{5}-8}{2}=-4+2\sqrt{5}\)
a) 3x2+12x-66=0
b) 9x2-30x+225=0
c) x2+3x-10=0
d) 3x2-7x+1=0
e) 3x2+7x+2=0
f) 4x2-12x+9=0
g) 3x2+7x+2=0
h) x2-4x+1=0
i) 2x2-6x+1=0
j) 3x2+4x-4=0
Cảm ơn bạn giải giúp mình rất nhiều .
a)
\(3x^2+12x-66=0\)
\(\Leftrightarrow x^2+4x-22=0\)
\(\Leftrightarrow x^2+4x+4=26\Leftrightarrow (x+2)^2=26\)
\(\Rightarrow x+2=\pm \sqrt{26}\Rightarrow x=-2\pm \sqrt{26}\)
b)
\(9x^2-30x+225=0\)
\(\Leftrightarrow (3x)^2-2.3x.5+25+200=0\)
\(\Leftrightarrow (3x-5)^2=-200< 0\) (vô lý nên pt vô nghiệm)
c)
\(x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x(x-2)+5(x-2)=0\Leftrightarrow (x+5)(x-2)=0\)
\(\Rightarrow x=-5\) hoặc $x=2$
d)
$3x^2-7x+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x)+1=0$
$\Leftrightarrow 3(x^2-\frac{7}{3}x+\frac{7^2}{6^2})=\frac{37}{12}$
$\Leftrightarrow 3(x-\frac{7}{6})^2=\frac{37}{12}$
$\Leftrightarrow (x-\frac{7}{6})^2=\frac{37}{36}$
$\Rightarrow x-\frac{7}{6}=\frac{\pm \sqrt{37}}{6}$
$\Rightarrow x=\frac{7\pm \sqrt{37}}{6}$
e)
$3x^2+7x+2=0$
$\Leftrightarrow 3(x^2+\frac{7}{3}x+\frac{7^2}{6^2})=\frac{25}{12}$
$\Leftrightarrow 3(x+\frac{7}{6})^2=\frac{25}{12}$
$\Leftrightarrow (x+\frac{7}{6})^2=\frac{25}{36}$
$\Rightarrow x+\frac{7}{6}=\pm \frac{5}{6}$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
f)
$4x^2-12x+9=0$
$\Leftrightarrow (2x)^2-2.2x.3+3^2=0$
$\Leftrightarrow (2x-3)^2=0\Rightarrow 2x-3=0\Rightarrow x=\frac{3}{2}$
g) Trùng câu e
h)
$x^2-4x+1=0$
$\Leftrightarrow x^2-4x+4-3=0$
$\Leftrightarrow (x-2)^2=3\Rightarrow x-2=\pm \sqrt{3}$
$\Rightarrow x=2\pm \sqrt{3}$
i)
$2x^2-6x+1=0$
$\Leftrightarrow 2(x^2-3x+\frac{3^2}{2^2})=\frac{7}{2}$
$\Leftrightarrow 2(x-\frac{3}{2})^2=\frac{7}{2}$
$\Leftrightarrow (x-\frac{3}{2})^2=\frac{7}{4}$
$\Rightarrow x-\frac{3}{2}=\pm \frac{\sqrt{7}}{2}$
$\Rightarrow x=\frac{3\pm \sqrt{7}}{2}$
j)
$3x^2+4x-4=0$
$\Leftrightarrow 3x^2+6x-2x-4=0$
$\Leftrightarrow 3x(x+2)-2(x+2)=0$
$\Leftrightarrow (x+2)(3x-2)=0$
$\Rightarrow x+2=0$ hoặc $3x-2=0$
$\Rightarrow x=-2$ hoặc $x=\frac{2}{3}$
Giải các phương trình tích sau
a) 3x2 + 12x – 66 = 0 b) 9x2 – 30x + 225 = 0
c) x2 + 3x – 10 = 0 d) 3x2 – 7x + 1 = 0
e) 3x2 – 7x + 8 = 0 f) 4x2 – 12x + 9 = 0
g) 3x2 + 7x + 2 = 0 h) x2 – 4x + 1 = 0
i) 2x2 – 6x + 1 = 0 j) 3x2 + 4x – 4 = 0