CMR với mọi số nguyên a, các p/s sau tối giản:
a) a + 1/ 2a +3
b) 2a+3/ 4a + 8
c) 2a + 2/ 5a + 3
Cho các số a,b,c thỏa mãn 0<a,b,c<1/2 và 2a+3b+4c=3
Tìm min P=\(\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏiĐể câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏitím các số nguyên a để biệu thức sau có giá trị là 1 số nguyên
M= 2a+8/5+-a-7/5
N= 2a+9/a+3+5a+17/a+3+-3a/a+3+-4a-23/a+3
tìm số nguyên a để các biểu thức sau nguyên
(2a+8)/5+(-a-7)/5
(2a+9)/(a+3)+(5a+17)/(a+3)+(-3a)/(a+3)+(-4a-23)/(a+3)
1.cho a^2-b^2=4c^2.CM: (5a-3b+8c)(5a-3b-8c)=(3a-5b)^2
2.cho a^2+b^2+c^2=2017. Tính M=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2
a, Vì \(a^2-b^2=4c^2\Rightarrow16a^2-16b^2=64c^2\) (1)
Ta có:\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-64c^2\) (2)
Thay (1) vào (2) ta được
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2\)
=> đpcm
b, \(M=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2b-b\right)^2\)
\(=4a^2+4b^2+c^2+4b^2+4c^2+a^2+4c^2+4a^2+b^2\)
\(+8ab-4ac-4bc+8bc-4ab-4ac+8ac-4bc-4ab\)
\(=9.\left(a^2+b^2+c^2\right)=9.2017=18153\)
Vậy M=18153
Cho a,b là các số nguyên thỏa mãn:
2a2 + a = 3b2 + b
CMR 5a+5b+3 là hợp số
Cho a, b, c thỏa mãn \(0< a,b,c< \frac{1}{2}\) và 2a + 3b + 4c = 3. Tìm GTNN của biểu thức:
\(P=\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
A= a^3 +2a^2-1/ a^3 +2a^2+2a+1
a)rút gọn biểu thức
b) cmr nếu a là số nguyên thì giá trị của biểu thức tìm đc của câu a là một p/s tối giản
nhanh tk cho
Trả lời
a)\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)+\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}\)
b) Gọi d là ƯCLN (\(a^2+a-1;a^2+a+1\))
\(\Rightarrow\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}}\)
\(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow\)d=1 hoặc d=2
Mà a(a+1)-1. Với là số nguyên ta có a(a+1) là tích 2 nguyên số liên tiếp
\(\Rightarrow a\left(a+1\right)⋮2\)\(\Rightarrow a\left(a+1\right)-1\)lẻ
\(\Rightarrow d\ne2\)
\(\RightarrowĐPCM\)
a)
A =
a
3
+ a
2
+ a
2
+ a + a + 1
a
3 + a
2
+ a
2 − 1 =
a
2
a + 1 + a a + 1 + a + 1
a
2
a + 1 + a + 1 a + 1 =
a + 1 a
2
+ a + 1
a + 1 a
2
+ a − 1 =
a
2
+ a − 1
a
2
+ a − 1
b) gọi d = ƯCLN (a2
+ a - 1; a2
+ a +1 )
=> a2
+ a - 1 chia hết cho d
a
2
+ a +1 chia hết cho d
=> (a2
+ a + 1) - (a2
+ a - 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2
Nhận xét: a2
+ a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2
+ a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm
https://olm.vn/hoi-dap/question/84951.html
đây nè
mik giống cách đó
Tìm số nguyên a để các biểu thức sau nguyên
M=\(\frac{2a+8}{5}+\frac{-a-7}{5}\)
N=\(\frac{2a+9}{a+3}+\frac{5a+17}{a+3}+\frac{-3a}{a+3}+\frac{-4a-23}{a+3}\)