a) Gọi \(d=\left(a+1;2a+3\right)\Rightarrow\hept{\begin{cases}a+1⋮d\\2a+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2a+2⋮d\\2a+3⋮d\end{cases}}}\)
\(\Rightarrow\left(2a+3-2a-2\right)=1⋮d\Rightarrow d=1\)
Vậy phân số \(\frac{a+1}{2a+3}\) là phân số tối giản.
b) Gọi \(d=\left(2a+3;4a+8\right)\Rightarrow\hept{\begin{cases}2a+3⋮d\\4a+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}4a+6⋮d\\4a+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4a+8-4a-6\right)=2⋮d\)
Lại có 2a + 3 là số lẻ nên d không thể bằng 2. Vậy thì d = 1
Suy ra phân số \(\frac{2a+3}{4a+8}\) là phân số tối giản.
c) Đề này ko đúng. Giả sử a = 3 thì \(\frac{2a+2}{5a+3}=\frac{8}{18}\) không là phân số tối giản.