Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
TT
Xem chi tiết
NT
15 tháng 10 2021 lúc 22:49

c: \(x^4+x^3-4x^2+x+1\)

\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)

\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)

\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)

\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)

Bình luận (0)
TV
Xem chi tiết
AH
7 tháng 7 2021 lúc 20:29

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

Bình luận (2)
AH
7 tháng 7 2021 lúc 20:34

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

Bình luận (0)
VD
Xem chi tiết
VV
10 tháng 8 2017 lúc 17:36

a) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+2x+28x+7=0\)
\(\Rightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(4x+1\right)=0\)
\(\Rightarrow\)\(2x+7=0\)  hoặc  \(4x+1=0\)
\(\Rightarrow\)\(2x=-7\)          ;     \(4x=-1\)
\(\Rightarrow\)\(x=\frac{-7}{2}\)             ;     \(x=\frac{-1}{4}\)
Vậy \(x\in\left\{\frac{-7}{2};\frac{-1}{4}\right\}\)

b) \(x^3-11x^2+30x=0\)
\(\Rightarrow x\left(x^2-11x+30\right)=0\)
\(\Rightarrow x\left(x^2-6x-5x+30\right)=0\)
\(\Rightarrow x\left[x\left(x-6\right)-5\left(x-6\right)\right]=0\)
\(\Rightarrow x\left(x-5\right)\left(x-6\right)=0\)
\(\Rightarrow\)\(x=0\)  hoặc  \(x-5=0\)  hoặc  \(x-6=0\)
\(\Rightarrow\)\(x=0\)     ;      \(x=5\)               ;     \(x=6\)
Vậy \(x\in\left\{0;5;6\right\}\)

Bình luận (0)
TM
10 tháng 8 2017 lúc 17:46

a)\(8x^2+30x+7=0\Leftrightarrow8x^2+2x+28x+7=0\Leftrightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)

\(\Leftrightarrow\left(2x+7\right)\left(4x+1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+7=0\\4x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)

b)\(x^3-11x^2+30x=0\Leftrightarrow x\left(x^2-11x+30\right)=0\Leftrightarrow x\left(x^2-5x-6x+30\right)=0\)

\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)

<=>x=0 hoặc x-6=0 hoặc x-5=0 <=> x=0 hoặc x=6 hoặc x=5

Bình luận (0)
DV
Xem chi tiết
LL
7 tháng 11 2021 lúc 10:43

1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

Bình luận (0)
NM
7 tháng 11 2021 lúc 10:43

\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)

Bình luận (1)
H24
7 tháng 11 2021 lúc 10:43

a. \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

b. \(=\left(1-x\right)^3\)

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 7 2019 lúc 15:49

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

Bình luận (0)
ZZ
5 tháng 7 2019 lúc 15:54

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

Bình luận (0)
H24
5 tháng 7 2019 lúc 16:06

cảm ơn nha!

Bình luận (0)
HT
Xem chi tiết
DC
Xem chi tiết
NL
12 tháng 7 2021 lúc 22:24

\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)

Bình luận (0)
NT
12 tháng 7 2021 lúc 22:26

\(x^4+1\)

\(=x^4+2x^2+1-2x^2\)

\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)

\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)

Bình luận (0)
VM
23 tháng 1 2022 lúc 20:14

bằng sau này bn nhá

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
KL
25 tháng 5 2023 lúc 21:18

x⁸ + x⁴ + 1

= x⁸ + 2x⁴ + 1 - x⁴

= (x⁴ + 1)² - x⁴

= (x⁴ + 1)² - (x²)²

= (x⁴ + 1 + x²)(x⁴ + 1 - x²)

= (x⁴ + x² + 1)(x⁴ - x² + 1)

Bình luận (0)
H24
Xem chi tiết
NT
4 tháng 9 2023 lúc 19:27

64x^4+81

=64x^4+144x^2+81-144x^2

=(8x^2+9)^2-(12x)^2

=(8x^2-12x+9)(8x^2+12x+9)

x^8+4y^4

=x^8+4x^4y^2+4y^4-4x^4y^2

=(x^4+2y^2)^2-(2x^2y)^2

=(x^4-2x^2y+2y^2)(x^4+2x^2y+2y^2)

x^8+x^7+1

=x^8+x^7+x^6-x^6+1

=x^6(x^2+x+1)-(x^6-1)

=(x^2+x+1)*x^6-(x-1)(x+1)(x^2+x+1)(x^2-x+1)

=(x^2+x+1)[x^6-(x^2-1)(x^2-x+1)]

=(x^2+x+1)(x^6-x^4+x^2-x^2+x^2-x+1)

=(x^2+x+1)(x^6-x^4+x^2-x+1)

Bình luận (0)