phân tích đa thức thành nhân tử (thêm bớt) : x3-11x2+30x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Phân tích đa thức thành nhân tử :
a.x4 - 4x3 + 11x2 - 16x + 16
b.x4 + 6x3 + 13x2 + 12x + 4
c.x4 + x3 - 4x2 + x + 1
d.x4 + x3 - 4x2 + x + 1
c: \(x^4+x^3-4x^2+x+1\)
\(=x^4-x^3+2x^3-2x^2-2x^2+2x-x+1\)
\(=\left(x-1\right)\left(x^3+2x^2-2x-1\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)\left(x^2+x+1\right)+2x\left(x-1\right)\right]\)
\(=\left(x-1\right)^2\cdot\left(x^2+3x+1\right)\)
HELP ME!!!
Phân tích đa thức sau thành nhân tử bằng cách thêm bớt hạng tử, tách hạng tử
a, 6x2-11x
b, x7+x5+1
c, x8+x4+1
d, x3-5x+8-4
e, x5+x4+1
a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$
$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$
$=(x^2+x+1)(x^5-x^4+x^3-x+1)$
c.
$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2$
$=(x^4+1-x^2)(x^4+1+x^2)$
$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$
$=(x^4-x^2+1)[(x^2+1)^2-x^2]$
$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$
d.
$x^3-5x+8-4=x^3-5x+4$
$=x^3-x^2+x^2-x-(4x-4)$
$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$
e.
$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$
$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$
$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^2+x)+1]$
$=(x^2+x+1)(x^3-x+1)$
Tìm x
A)8x2+30x+7=0
B)x3-11x2+30x=0
Dạng phân tích đa thức thành nhân tử bằng cách thêm bớt và tách .mọi người cố gắng giúp mình
a) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+2x+28x+7=0\)
\(\Rightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(4x+1\right)=0\)
\(\Rightarrow\)\(2x+7=0\) hoặc \(4x+1=0\)
\(\Rightarrow\)\(2x=-7\) ; \(4x=-1\)
\(\Rightarrow\)\(x=\frac{-7}{2}\) ; \(x=\frac{-1}{4}\)
Vậy \(x\in\left\{\frac{-7}{2};\frac{-1}{4}\right\}\)
b) \(x^3-11x^2+30x=0\)
\(\Rightarrow x\left(x^2-11x+30\right)=0\)
\(\Rightarrow x\left(x^2-6x-5x+30\right)=0\)
\(\Rightarrow x\left[x\left(x-6\right)-5\left(x-6\right)\right]=0\)
\(\Rightarrow x\left(x-5\right)\left(x-6\right)=0\)
\(\Rightarrow\)\(x=0\) hoặc \(x-5=0\) hoặc \(x-6=0\)
\(\Rightarrow\)\(x=0\) ; \(x=5\) ; \(x=6\)
Vậy \(x\in\left\{0;5;6\right\}\)
a)\(8x^2+30x+7=0\Leftrightarrow8x^2+2x+28x+7=0\Leftrightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(4x+1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+7=0\\4x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
b)\(x^3-11x^2+30x=0\Leftrightarrow x\left(x^2-11x+30\right)=0\Leftrightarrow x\left(x^2-5x-6x+30\right)=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
<=>x=0 hoặc x-6=0 hoặc x-5=0 <=> x=0 hoặc x=6 hoặc x=5
1 a. phân tích đa thức -x3 + 3x2 - 3x + 1 thành nhân tử
b. phân tích đa thức 1 - 3x + 3x2 - x3 thành nhân tử
1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)
a. \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b. \(=\left(1-x\right)^3\)
phân tích đa thức thành nhân tử (thêm bớt cùng một hạng tử):
x^3 - 2x - 4
phân tích đa thức thành nhân tử (đặt biến phụ):
x^4 + 2x^3 + 5x^2 + 4x - 12
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
Phân tích Đa thức thành nhân tử x^4 - 30x^2 + 30x - 30
\(x^4+1\)
dùng phương pháp thêm bớt cùng một hạng tử để phân tích đa thức thành nhân tử
\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
bằng sau này bn nhá
phân tích đa thức thành nhân tử
a) x8 + x4 + 1 ( bằng cách thêm bớt hạng tử x2 )
x⁸ + x⁴ + 1
= x⁸ + 2x⁴ + 1 - x⁴
= (x⁴ + 1)² - x⁴
= (x⁴ + 1)² - (x²)²
= (x⁴ + 1 + x²)(x⁴ + 1 - x²)
= (x⁴ + x² + 1)(x⁴ - x² + 1)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử
64x4+81
x8+4y4
x8+x7+1
64x^4+81
=64x^4+144x^2+81-144x^2
=(8x^2+9)^2-(12x)^2
=(8x^2-12x+9)(8x^2+12x+9)
x^8+4y^4
=x^8+4x^4y^2+4y^4-4x^4y^2
=(x^4+2y^2)^2-(2x^2y)^2
=(x^4-2x^2y+2y^2)(x^4+2x^2y+2y^2)
x^8+x^7+1
=x^8+x^7+x^6-x^6+1
=x^6(x^2+x+1)-(x^6-1)
=(x^2+x+1)*x^6-(x-1)(x+1)(x^2+x+1)(x^2-x+1)
=(x^2+x+1)[x^6-(x^2-1)(x^2-x+1)]
=(x^2+x+1)(x^6-x^4+x^2-x^2+x^2-x+1)
=(x^2+x+1)(x^6-x^4+x^2-x+1)