CMR:2^2^4n+1+7 chia hết cho 11 (n thuộc N)
CMR:2^2^4n+1 +7 chia hết cho 11(n thuộc N)
1. CMR: 7^7^7^7^7^7 - 7^7^7^7 chia hết cho 10
2. CMR: 2^3^4n-1 + 3 chia hết cho 19 với mọi n thuộc N
Cmr (2^3^4n+1) + 3 chia hết cho 11 với n thuộc N.
Giúp e vs ạ😭😭😭
1. CMR: 1^2+3^2+5^2+...+(2n-1)^2= (n*(4n^2-1))/3 (vs mọi n thuộc Z+)
2. CMR: 4^n+15*n-1 chia hết cho 9 (vs mọi n thuộc Z+)
3. CMR: n^3+11*n chia hết cho 6 (vs mọi n thuộc Z+)
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.
CMR mọi n thuộc N thì
a, 74n-1 chia hết cho 5
b, 34n+1+2 chia hết cho 5
a) Chữ số tận cùng của 74n là : ( 7 * 7 * 7 * 7 ) mod 10 = 1
Vậy chữ số tận cùng của 74n - 1 là : ( 7 * 7 * 7 * 7 - 1 ) mod 10 = 0 ( đpcm )
b) Tương tự
Ta có 74n - 1 = (74)n - 1 = (...1)n - 1 = (...1) - 1 = (...0)
=> 74n - 1 \(⋮\)5
Ta có 34n + 1 + 2 =34n.3 + 2 = (34)n.3 + 2 = (...1)n.3 + 2 =(...1).3 + 2 =(...3) + 2 = (...5)
=> 34n + 1 + 2 \(⋮\)5
CMR
a) (5n + 7) x (4n + 6) chia hết cho 2 với mọi n thuộc N
b) (8n + 1) x (6n + 5) chia hết cho 2 với mọi n thuộc N
CMR nếu với mọi n thuộc N
a) (5n+7)(4n+6) chia hết cho 2
b) (8n+1)(6n+5) ko chia hết 2
c) n.(n+1)(2n+1) chia hết cho 6
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
cmr với mọi n thuộc N thì:
a) 2^(4n+1) + 3 chia hết cho 5
b) 2^(4n+2) + 1 chia hết cho 5
c) 9^(2n+1) + 1 chia hết cho 10
d) 7^(4n) - 1 chia hết cho 5
e) 3^(4n+1) + 2 chia hết cho 5
a) \(2^{4n+1}+3=2.2^{4n}+3=2.16^n+3\)
Do \(16^n\) có tận cùng luôn là 6 nên \(2.16^n\) có tận cùng là 2 => \(2^{4n+1}+3\) có tận cùng là 5 nên chia hết cho 5.
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11