CMR:2^2^4n+1 +7 chia hết cho 11(n thuộc N)
CMR: Với mọi n thuộc Z, ta có:
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
CMR a) n^2 + 4n + 3 chia hết cho 8 , n thuộc Z
b) n^3 + 3n^2 - n - 3 chia hết cho 48 , n thuộc Z
Bài 1)với n thuộc số tự nhiên. cmr: 20n+16n-3n-1 chia hết cho 323
Bài 2) cmr với mọi n thì:
a)11(n+2)+2(2n+1) chia hết cho 133
b)5(n+2)+2.6n chia hết cho 19
c)7.52n+12. 6n chia hết cho 19
bài 3)tìm n sao cho
a)3(2n+3)+2(4n+1) chia hết cho 25
b)5n-2n chia hết cho 9
chứng minh rằng với mọi n thuộc N thì 32 4n+1+2 chia hết cho 11
bài 1: cho n thuộc Z
a) A= n^4- 2n^3-n^2+2n chia hết cho 24
b) B= n^5-5n^3 +4n chia hết cho 120
bài 2 : cho A= n^4+4n^3-4n^2-16n ( với n chẵn)
cm A chia hết cho 2^7
bài 1 cho tổng A =71+72+73 +...+ 74k ( trong đó k là số tự nhiên cho trước chia hết cho 400 )
CMR TỔNG A chia hết cho 400
bài 2 : CMR n2 +4n +5 không chia hết cho 8 với mọi n lẻ
Cmr : x8n + x4n+ 1 chia hết cho x2n+x2+1 với n thuộc N
Cho n chẵn. CMR: Cả 2 số n^3-4n và n^3 +4n chia hết cho 16
b) CMR: n^5-n chia hết cho 30 ( n^5-n chia hết cho 240, n lẻ)