Những câu hỏi liên quan
H24
Xem chi tiết
IN
3 tháng 3 2020 lúc 22:17

Biến đổi phương trình :\(9x+2=y.\left(y+1\right)\) 

Ta thấy vế trái của phương trình là số chia cho \(3\) dư \(2\) nên \(y.\left(y+1\right)\) chia cho \(3\) dư \(2\)

Chỉ có thể :\(y=3k+1;y+1=3k+2\) với k là số nguyên

Khi đó:\(9x+2=\left(3k+1\right).\left(3k+2\right)\)

\(\iff\) \(9x=9k.\left(k+1\right)\)

\(\iff\) \(x=k.\left(k+1\right)\)

Thử lại ,\(x=k.\left(k+1\right);y=3k+1\) thỏa mãn phương trình đã cho

Vậy \(\hept{\begin{cases}x=k.\left(k+1\right)\\y=3k+1\end{cases}}\) với k là số nguyên tùy ý

Bình luận (0)
 Khách vãng lai đã xóa
AD
Xem chi tiết
AH
6 tháng 3 2021 lúc 23:13

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

Bình luận (0)
AH
6 tháng 3 2021 lúc 23:13

Lời giải:

Hiển nhiên $x\geq 0$

Ta có: $2^x=y^2-57\equiv y^2\equiv 0,1\pmod 3$

$\Leftrightarrow (-1)^x\equiv 0,1\pmod 3$

$\Rightarrow x$ chẵn.

Đặt $x=2a$ với $a$ là số tự nhiên.

Khi đó: $2^{2a}-y^2=-57$

$\Leftrightarrow (2^a-y)(2^a+y)=-57$

Đến đây là dạng phương trình tích cực kỳ đơn giản nên bạn có thể tự xét TH để giải. Kết quả $a=3; y=11$ hay $x=6; y=7$

Bình luận (0)
LT
Xem chi tiết
B1
14 tháng 9 2017 lúc 21:09

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

Bình luận (0)
NT
14 tháng 9 2017 lúc 21:10

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

Bình luận (0)
TN
Xem chi tiết
DQ
Xem chi tiết
NL
21 tháng 1 2021 lúc 11:41

\(\Leftrightarrow9x^2-6x\left(16y+24\right)+\left(16y+24\right)^2=9x^2+16x+32\)

\(\Leftrightarrow x\left(3y+5\right)=8y^2+24y+17\)

\(\Leftrightarrow x=\dfrac{8y^2+24y+17}{3y+5}\in Z\)

\(\Rightarrow9x=\dfrac{9\left(8y^2+24y+17\right)}{3y+5}\in Z\)

\(\Rightarrow24y+62-\dfrac{157}{3y+5}\in Z\)

\(\Rightarrow3y+5=Ư\left(157\right)=\left\{-157;-1;1;157\right\}\)

\(\Rightarrow y=...\)

Bình luận (0)
VD
Xem chi tiết
NC
11 tháng 9 2020 lúc 23:43

a.  \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)

<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)

<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)

Đặt: x + y = u; xy = v => u; v là số nguyên

Ta có: uv - \(u^2+2v=1\)

<=> \(u^2-uv-2v+1=0\) 

<=> \(u^2+1=v\left(2+u\right)\)

=> \(u^2+1⋮2+u\)

=> \(u^2-4+5⋮2+u\)

=> \(5⋮2-u\)

=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1 

Mỗi trường hợp sẽ tìm đc v 

=> x; y 

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
DH
Xem chi tiết
TH
Xem chi tiết
HD
15 tháng 1 2022 lúc 23:51

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

Bình luận (0)