Những câu hỏi liên quan
JL
Xem chi tiết
TT
Xem chi tiết
TC
10 tháng 11 2023 lúc 20:36

\(ĐKXĐ:x>2\)

BPT đã cho tương đương với:

\(2log_2\sqrt{x+1}+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x+1\right)+log_2\left(x-2\right)\le2\)

\(\Leftrightarrow log_2\left(x^2-x-2\right)\le2\)\(\Leftrightarrow0< x^2-x-2\le2^2\)\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\-2\le x< -1\left(l\right)\end{matrix}\right.\)

Vậy tổng các nghiệm nguyên của bpt là 3

Bình luận (0)
NN
Xem chi tiết
NK
31 tháng 3 2020 lúc 15:16

a)11x-7<8x+7

<-->11x-8x<7+7

<-->3x<14

<--->x<14/3 mà x nguyên dương 

---->x \(\in\){0;1;2;3;4}

Bình luận (0)
 Khách vãng lai đã xóa
NK
31 tháng 3 2020 lúc 15:28

b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4

<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)

<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48

<--->21x>-45

--->x>-45/21=-15/7  mà x nguyên âm 

----->x \(\in\){-1;-2}

Bình luận (0)
 Khách vãng lai đã xóa
NK
31 tháng 3 2020 lúc 15:40

c)2(3-x)-1,5(x-4)<3-x

<--->6-2x-1,5x+6<3-x

<--->6+6-3<2x+1,5x-x

<--->9<2,5x

<--->3,6<x mà x la so nguyen nhỏ nhất 

--->x=4

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 3 2022 lúc 23:35

ĐKXĐ: \(x>4\)

\(\dfrac{x-2}{\sqrt{x-4}}\le\dfrac{4}{\sqrt{x-4}}\Rightarrow x-2\le4\)

\(\Rightarrow x\le6\Rightarrow4< x\le6\)

\(\Rightarrow x=\left\{5;6\right\}\Rightarrow5+6=11\)

Bình luận (0)
MN
Xem chi tiết
NL
4 tháng 10 2021 lúc 22:43

ĐKXĐ: \(x>-1\)

Bước quan trọng nhất là tách hàm

\(\Leftrightarrow log_2\sqrt{x+3}-2\sqrt{x+3}+\left(x+3\right)=log_2\left(x+1\right)-2\left(x+1\right)+\left(x+1\right)^2\)

Đến đây coi như xong \(\Rightarrow\sqrt{x+3}=x+1\Rightarrow x=1\)

Bình luận (0)
NH
Xem chi tiết
NL
1 tháng 9 2020 lúc 22:29

ĐK: \(\left\{{}\begin{matrix}2x^2+2x-6>0\\2x^2-5x+4>0\\mx-5>0\end{matrix}\right.\)

Khi đó pt tương đương:

\(2log_{mx-5}\left(x^2+2x-6\right)=2log_{mx-5}\left(2x^2-5x+4\right)\)

\(\Leftrightarrow x^2+2x-6=2x^2-5x+4\)

\(\Leftrightarrow x^2-7x+10=0\Rightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)

Thay 2 nghiệm vào 2 điều kiện đầu đều thỏa mãn

\(\Rightarrow\) pt có nghiệm duy nhất khi và chỉ khi có đúng 1 nghiệm thỏa mãn \(mx-5>0\)

TH1: \(\left\{{}\begin{matrix}2m-5>0\\5m-5\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>\frac{5}{2}\\m\le1\end{matrix}\right.\) (ko có m thỏa mãn)

TH2: \(\left\{{}\begin{matrix}5m-5>0\\2m-5\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>1\\m\le\frac{5}{2}\end{matrix}\right.\) \(\Rightarrow1< m\le\frac{5}{2}\)

Bình luận (0)
TL
Xem chi tiết
NL
25 tháng 6 2021 lúc 15:32

ĐKXĐ: \(-x^2+4x+m>0\)

\(log_2\left(-x^2+4x+m\right)-log_2\left(x^2+2\right)< log_23\)

\(\Leftrightarrow log_2\left(\dfrac{-x^2+4x+m}{x^2+2}\right)< log_23\)

\(\Leftrightarrow\dfrac{-x^2+4x+m}{x^2+2}< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+4x+m>0\\-x^2+4x+m< 3x^2+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>x^2-4x\\m< 4x^2-4x+6\end{matrix}\right.\) ; \(\forall x\in\left[1;5\right]\)

Xét hai hàm \(\left\{{}\begin{matrix}f\left(x\right)=x^2-4x\\g\left(x\right)=4x^2-4x+6\end{matrix}\right.\) trên \(\left[1;5\right]\) ta được: \(\left\{{}\begin{matrix}f\left(x\right)_{max}=f\left(5\right)=5\\g\left(x\right)_{min}=g\left(1\right)=6\end{matrix}\right.\)

\(\Rightarrow5\le m\le6\)

Có 2 giá trị nguyên của m

Bình luận (0)
NT
Xem chi tiết
NL
20 tháng 3 2021 lúc 14:47

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m-1\right)^2-\left(4m+8\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow m^2-6m-7\le0\)

\(\Rightarrow-1\le m\le7\)

\(\Rightarrow m=\left\{-1;0;1;2;3;4;5;6;7\right\}\)

Bình luận (0)