1. Tìm x thuộc Z biết:
a) (-2012) . (x+3) = 0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a)
\(x+\left(x+2\right)+\left(x+4\right)+...+\left(x+98\right)=0\)
\(x+x+2+x+4+...+x+98=0\)
\(50x+\left(98+2\right).\left[\left(98-2\right):2+1\right]:2=0\)
\(50x+100.49:2=0\)
\(50x+49.50=0\)
\(50x=0-49.50\)
\(50x=-2450\)
\(x=-2450:50\)
\(x=-49\)
b)
\(\left(x-5\right)+\left(x-4\right)+\left(x-3\right)+...+\left(x+11\right)+\left(x+12\right)=99\)
\(x+x+x+...+x-5-4-3-...+11+12=99\)
\(18x+6+7\text{+ 8 + 9 + 10 + 11 + 12 = 99}\)
\(18x+63=99\)
\(18x=99-63\)
\(18x=36\)
\(x=36:18\)
\(x=2\)
a) x + (x + 2) + (x + 4) + ... + (x + 98) = 0
x + x + 2 + x + 4 + ... + x + 98 = 0
50x + (98 + 2).[(98 - 2) : 2 + 1]:2 = 0
50x + 100 .49 : 2 = 0
50x + 49.50 = 0
50x = 0 - 49.50
50x = -2450
x = -2450 : 50
x = -49
b) (x - 5) + (x - 4) + (x - 3) + ... + (x + 11) + (x + 12) = 99
x + x + x + ... + x - 5 - 4 - 3 - ... + 11 + 12 = 99
18x + 6 + 7 + 8 + 9 + 10 + 11 + 12 = 99
18x + 63 = 99
18x = 99 - 63
18x = 36
x = 36 : 18
x = 2
tìm x thuộc Z biết:a) (-x2-7).(x+1)>0
b)(x-2).(x+2)<0
tìm x,y thuộc Z biết:
a) 12/16=-x/4=21/y=Z/-80
b)5/12=x/-72
c)x+3/15=-1/3
d)3+x/7+y=3/7 và x+y=20
a: \(\Leftrightarrow\dfrac{x}{-4}=\dfrac{21}{y}=\dfrac{z}{-80}=\dfrac{3}{4}\)
=>x=-3; y=28; z=-60
b: 5/12=x/-72
=>x=-72*5/12=-6*5=-30
c: =>x+3=-5
=>x=-8
tìm x thuộc Z để : a, | x - 2012| - 1 = 0
b, |x| > x
a, | x - 2012| =1
+) x-2012=1 +) x-2012=-1
=> x=2013 => x=2011
b, <=> x khác x với mọi x thuộc Z
a)\(\left|x-2012\right|-1=0=>\left|x-2012\right|=1\)
\(=>\orbr{\begin{cases}x-2012=1\\x-2012=-1\end{cases}=>\orbr{\begin{cases}x=2013\\x=2011\end{cases}}}\)
b)\(\left|x\right|>x=>x< 0\)
a, dễ dồi khỏi cần làm
b, + Với x \(\in\)Z và x \(\ge\)0 ta có : |x| = x ( loại)
+ Với x \(\in\)Z và x < 0 ta có |x| = -x
Vì x < 0 => -x > 0 => -x > x => |x| > x ( chọn)
KL: Vậy x \(\in\)Z và x < 0
Tìm x thuộc Z,biết:a)3|x|=57;b)2|x|=-10;c)|x+4|=21
Tìm x thuộc Q, biết:
a) |x| = 2,1
b) |x| = 3/4 và x < 0
c) |x| = -1 2/5
d) |x| = 0,35 và x > 0
1. Tìm x thuộc Z:
a) (-2012).(x+3)=0
Tìm x thuộc Z,biết:
a) (x+3).(5-x)=0
b)17+(-20)+23+(-26)+...+53+(-56)
c)(x+17)⋮(x+3)
Giúp ml với ạ !
\(a,\left(x+3\right)\left(5-x\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)
\(c,x+17⋮x+3\\ x+3+14⋮x+3\\ 14⋮x+3\\ x+3\inƯ\left(14\right)=\left\{\pm14;\pm7\pm2;\pm1\right\}\)
Từ đó bạn tìm những giá trị của x nha!
Tìm x∈Z, biết:
a)x.(x-6)=0
b)(-7-x).(-x+5)=0
c)(x+3).(x-7)=0
d)(x-3).(x2+12)=0
e)(x+1).(2-x) ≥0
f)(x-3).(x-5) ≤0
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
c) => \(\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)