Tìm x thuộc tập hợp Z để x2 + x luôn nhận giá trị dương
Tìm x thuộc tập hợp Z để x + x2 luôn nhận giá trị dương.
x^2 + x = x^2 + 2x.1/2 + 1/4 - 1/4 \
nhớ chọn mình nha!!!!!!!!!!!!!!!!!!!!!
Tìm x thuộc Z để 2/A nhận giá trị nguyên dương lớn nhất
Lời giải:
Để $\frac{2}{A}$ dương thì $A$ dương
$\Leftrightarrow \sqrt{x}>1 \Leftrightarrow x>1$
\(\frac{2}{A}=\frac{2(\sqrt{x}+1)}{\sqrt{x}-1}=\frac{2(\sqrt{x}-1)+4}{\sqrt{x}-1}=2+\frac{4}{\sqrt{x}-1}\)
Để $A$ nhận giá trị nguyên dương lớn nhất thì $\sqrt{x}-1$ phải nhận giá trị nguyên dương nhỏ nhất.
Với $x>1$ thì $\sqrt{x}-1$ nguyên dương nhỏ nhất bằng $1$
$\Lefrightarrow \sqrt{x}=2$
$\Leftrightarrow x=4$
Vậy $x=4$ thì $\frac{2}{A}$ nhận giá trị nguyên dương lớn nhất.
Cho ba biểu thức 5x – 3; x 2 - 3 x + 12 và (x + 1)(x – 3)
Hãy tính giá trị của các biểu thức đã cho khi x nhận tất cả các giá trị thuộc tập hợp M = {x ∈Z | - 5 ≤ x ≤ 5 }, điền vào bảng sau rồi cho biết mỗi phương trình ở câu a có những nghiệm nào trong tập hợp M.
{x ∈Z | - 5 ≤ x ≤ 5 } ⇒ x ∈ {-5; -4; -3; -2; -1; 0; 1; 2; 3; 4; 5}
Phương trình (1) có nghiệm là x = 3 và x = 5.
Phương trình (2) có nghiệm là x = 0.
Phương trình (3) không có nghiệm.
a,tìm giá trị nhỏ nhất của p = |x|=2019 với x thuộc tập hợp z
b, tìm giá trị lớn nhất của q = 2020-|x| với x thuộc tập hợp z
a) Tìm các giá trị n thuộc N để A=2n+5/3n+1 có giá trị là số tự nhiên.
b) Cho x,y,z thuộc N*. Chứng minh rằng A=x/x y + y/y+z + z/z+x có giá trị là một số không thuộc tập hợp số nguyên.
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
1.Tìm giá trị của x biết :
\(\frac{x-7}{2}< 0\)
2. Xác định giá trị của x để biểu thức sau nhận giá trị âm : \(\frac{x+3}{x-5}\)
3.Tìm giá trị của x thuộc Z để biểu thức sau nhận giá trị dương
\(x^2+x\)
\(1.\frac{x-7}{2}< 0\)
\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)
\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)
\(S=\left\{xlx< 7\right\}\)
2)\(\)Đề biểu thức sau nhân giá trị âm thì :
\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)
\(S=\left\{xlx< 3\right\}\)
3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:
\(x^2+x\ge0\)
\(\Leftrightarrow x\left(x+1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)
\(S=\left\{xlx\ge-1\right\}\)
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Tìm tập hợp tất cả các giá trị của tham số m để phương trình x 3 + x 2 + x = m ( x 2 + 1 ) 2 có nghiệm thuộc đoạn [0;1]?
A . m ≥ 1
B . m ≤ 1
C . 0 ≤ m ≤ 1
D . 0 ≤ m ≤ 3 4
Cho biểu thức M=x / x+3+2x / x-3-9-3x^2 / 9-x^2
a)Rút gọn bt M
b)Tìm x để M dương,M âm
c)Tìm giá trị của của M khi x thỏa mãn |2x+1|=5
d)Tìm x thuộc Z để M nhận giá trị nguyên
e)Tìm giá trị lớn nhất của N=M .x-3/x^2-2x+3