Những câu hỏi liên quan
H24
Xem chi tiết
H24
18 tháng 3 2022 lúc 21:22

à bài này a nhớ (hay mất điểm ở bài này) ;v

Bình luận (2)
TN
18 tháng 3 2022 lúc 21:23

xinloi cậu tớ muốn giúp lắm mà tớ ngu toán:)

Bình luận (7)
H24
18 tháng 3 2022 lúc 21:32

a)Ta có \(2x-mx+2m-1=0\\ =>x\left(2-m\right)+2m-1=0\)

Để pt có nghiệm duy nhất thì \(a\ne0=>2-m\ne0\\=>m\ne2\)

b)Ta có \(mx+4=2x+m^2\\ =>mx+4-2x+m^2=0\\ =>\left(m-2\right)x=m^2-4\)

Để pt vô số nghiệm thì \(\left\{{}\begin{matrix}m-2=0\\m^2-4=0\end{matrix}\right.=>\left\{{}\begin{matrix}m=2\\m=\pm2\end{matrix}\right.\)\(=>m=2\)

c)Để pt có nghiệm duy nhất thì \(m^2-4\ne0>m\ne\pm2\)

Chắc vậy :v

Bình luận (0)
TP
Xem chi tiết
NA
Xem chi tiết
OA
Xem chi tiết
TH
18 tháng 4 2022 lúc 21:33

-ĐKXĐ: \(x\ne5\)

\(\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=2m\)

\(\Leftrightarrow\dfrac{\left(m^2+1\right)x+1-2m^2}{x-5}=\dfrac{2m\left(x-5\right)}{x-5}\)

\(\Rightarrow m^2x+x+1-2m^2=2mx-10m\)

\(\Leftrightarrow m^2x+x-2mx=2m^2-10m-1\)

\(\Leftrightarrow x\left(m^2-2m+1\right)=2m^2-10m-1\)

\(\Leftrightarrow x=\dfrac{2m^2-10m-1}{\left(m-1\right)^2}\)

-Để phương trình có nghiệm duy nhất, đạt GT duy nhất thì \(\left(m-1\right)^2\ne0\Leftrightarrow m\ne1\)

Bình luận (2)
TH
18 tháng 4 2022 lúc 21:42

-Chết mình nhầm, bài đầu tiên đúng rồi nhé. Mình xin lỗi bạn!

Bình luận (1)
MH
Xem chi tiết
NL
Xem chi tiết
PB
Xem chi tiết
CT
14 tháng 12 2017 lúc 11:19

Phương trình ax + b = 0 có nghiệm duy nhất khi a ≠ 0  .

Xét phương trình  m 2 + 1 x + 2 = 0  có hệ số a= m2 + 1> 0  với mọi m.

Do đó, phương trình này luôn có nghiệm duy nhất với mọi giá trị của m.

Bình luận (0)
CK
Xem chi tiết
NT
28 tháng 7 2023 lúc 0:30

3:

x^2-2x+1-m^2<=0

=>(x-1)^2-m^2<=0

=>(x-1)^2<=m^2

=>-m<=x-1<=m

=>-m+1<=x<=m+1

mà x thuộc [-1;2]

nên -m+1>=-1 và m+1<=2

=>-m>=-2 và m<=1

=>m<=2 và m<=1

=>m<=1

Bình luận (0)
BP
19 tháng 3 2024 lúc 23:19
Bình luận (0)
YK
Xem chi tiết
MH
12 tháng 3 2023 lúc 20:23

\(-x^2+\left(m+2\right)x+2m=0\)

\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)

Để phương trình có 2 nghiệm phân biệt

<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)

Vì phương trình có 2 nghiệm phân biệt

Áp dụng hệ thức vi ét

\(\Rightarrow x_1+x_2=m+2\)

=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)

\(\Rightarrow m=-3x_2-2\)

Bạn xem lại đề chứ k tìm được m luôn á

Bình luận (1)