tìm n thuộc N để 2^n-1 chia hết cho 7
Bài 1 : cho 2 số tự nhiên m,n thỏa mãn đẳng thức 24.m^4 +1 = n^2. CMR tích số (m.n) chia hết cho 5
Bài 2: Tìm n thuộc N để (n^10+1) chia hết cho 10.
Bài 3: Tìm n thuộc N để (n^2+n+1) chia hết cho n^2+1
Bài 4:Tìm n thuộc N để ( n+5)(n+6) chia hết cho 6n
Bài 5: Tìm n thuộc N để ( 3n^2+3n+7) chia hết cho 5
Bài 6: Tìm n thuộc N để (2^n-1) chia hết cho 7
Bài 7 : Tìm n thuộc N để (3^n+63) chia hết cho 72
Bài 8: Cho n thuộc N* ; (n,10)=1. CMR : (n^4-1) chia hết cho 40
Bài 9: Cho n thuộc N* . CMR : A= (2^3n+1 + 2^3n-1 +1) chia hết cho 7
Bài 10: Tìm x,y sao cho xxyy( có gạch trên đầu) là số chính phương
Bài 11: Tìm x, y sao cho xyyy( có gạch trên đầu) là số chính phương
trời ơi những câu nào tương tự thì hỏi lmj hỏi 1 câu rồi tự làm tương tự!
Tìm n thuộc N để 2.n+1 chia hết cho n+3
Tìm n thuộc N để 19.n+ 7 / 7.n+11 là số tự nhiên
câu a) 2n+1 chia hết cho 3
--> 2(n+3)-5 chia hết cho 3
mà 2(n+3) chia hết cho n +3
-->-5 chia hết cho n+3
-->n+3 C Ư(-5)={-1;-5;1;5}
-->n={-4;-8;-2;2}
______________________
li-ke cho mk nhé bn
a) 2n+1 chia hết cho n+3
=>2n+6-6+1 chia hết cho n+3
=>2.(n+3)-5 chia hết cho n+3
=>5 chia hết cho n+3
=>n+3=Ư(5)=(1,5)
=>n=(-2,2)
mà n thuộc N
=>n=2
tìm n thuộc N để :
a)n^2 +3v+7 chia hết cho n+3
b)n^2+1 chia hết cho n-1
c)n+9 chia hết cho n
mik chỉ biết lm câu c) thôi nha
n+9 \(⋮\)n
Ta có : \(n⋮n\)
Mà n+9 \(⋮\)n
\(\Rightarrow9⋮n\) \(\Rightarrow n\inƯ\left(9\right)=\left\{1,-1,3,-3,9,-9\right\}\)
Vậy n \(\in\left\{1,-1,3,-3,9,-9\right\}\)
mik sẽ giải thích như sau
Ta có: n chia hết cho n ( là chuyện đương nhiên vì nó luôn chia hết cho chính nó)
Mà n+9 chia hết cho n
Ta đã chứng minh đc n chia hết cho n vậy bây giờ phải đi chứng minh rằng 9 chia hết cho n
Lí do như vậy là do ta áp dụng định nghĩa :
a chia hết cho c, b chia hết cho c, suy ra a+ b chia hết cho c
Vậy muốn 9 chia hết cho n thì n phải thuộc ước của 9
suy ra n thuộc tập hợp những số mà 9 chia hết
Nhưng trong bài điều kiện của n là số tự nhiên nên n chỉ = 1, 3, 9
mik xl nha mik ko để ý đến điều kiện của n nên có cả giá trị âm vào đo
Bạn nào không hiểu mik có thể giải thích lại còn nếu hiểu rồi thì k cho mik nha
Tìm n thuộc N để:
a)3n+2 chia hết cho n-1
b)n^2+2n+7 chia hết cho n+2
(3n+2):(n-1) = 3 + 5/(n-1)
a ) Để 3n+2 chia hêt cho n-1
thì n-1 phải là ước của 5
do đó:
n-1 = 1 => n = 2
n-1 = -1 => n = 0
n-1 = 5 => n = 6
n-1 = -5 => n = -4
Vậy n = {-4; 0; 2; 6}
thì 3n+2 chia hêt cho n-1.
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
tìm n thuộc N để 2^n-1 chia hết cho 7
tìm n thuộc Z để 2^n -1 chia hết cho 7
Để \(2^n-1⋮7\) thì \(2^n=7k+1\)
Lời giải:
Nếu $n=3k$ với $k\in\mathbb{Z}$ thì:
$2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$
Nếu $n=3k+1$ với $k\in\mathbb{Z}$ thì:
$2^n-1=2^{3k+1}-1=2.8^k-1\equiv 2.1^k-1\equiv 1\pmod 7$
Nếu $n=3k+2$ với $k\in\mathbb{Z}$ thì:
$2^n-1=2^{3k+2}-1=4.8^k-1\equiv 4.1^k-1\equiv 3\pmod 7$
Vậy với $n=3k$ với $k\in\mathbb{Z}$ thì $2^n-1\vdots 7$
TÌm n thuộc N để:
a) 3n+2 chia hết cho n-1
b) n+8 chia hết cho n+3
c) n^2+2n+7 chia hết cho n+2
d) 4n-5 chia hết cho 2n-1
tìm n thuộc N để :
a)n^2+3n+7 chia hết cho n+3
b)n^2+1 chia hết cho 1-n