cho\(\frac{a}{b}=\frac{c}{d}\) CMR\(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho:\(\frac{a}{b}\)\(=\frac{c}{d}\) và b+d khác 0. CMR:
a) \(\frac{a^{2015}+c^{2015}}{b^{2015}+d^{2015}}\)=\(\frac{\left(a+c\right)^{2015}}{\left(b+d\right)^{2015}}\)
b) \(\frac{a^n+c^n}{b^n+d^n}=\frac{\left(a+c\right)^n}{\left(b+d\right)^n}\)(n thuộc N*)
CMR: \(\frac{mab+n}{\left(a-b\right)\left(a-c\right)}+\frac{mac+n}{\left(b-a\right)\left(b-c\right)}+\frac{mab+n}{\left(c-a\right)\left(c-b\right)}=m\)
\(n\ge3;n\inℕ\)
CMR:
\(\frac{1}{a^n\left(b+c\right)}+\frac{1}{b^n\left(c+a\right)}+\frac{1}{c^n\left(a+b\right)}\ge\frac{3}{2}\)
Câu 1: Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\)CMR:
a)\(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\) b) \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Câu 2: CMR: nếu \(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=...=\frac{a2017}{2018}\)thì \(\frac{a1}{a2018}=\left(\frac{a1+a2+a3+...+a2017}{a2+a3+a4+...+a2018}\right)^{2017}\)
Câu 3: Cho 6 số: x1, x2, x3, x4, x5, x6 khác 0 thỏa mãn: \(x2^2=x1.x3\); \(x3^2=x2.x4\); \(x4^2=x4.x5\); \(x5^2=x5.x6\)
CTR: \(\frac{x1}{x6}=\left(\frac{x1+x2+...+x5}{x2+x3+...+x6}\right)^5\)
Câu 1:
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-d^n}\)
b,Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{b}{d}\cdot\frac{a}{c}\Rightarrow\frac{a^2}{b^2}=\frac{ab}{cd}\)
\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ac}{cd}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)
Ta lại có: \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a+b}{c+d}\cdot\frac{a+b}{c+d}\Rightarrow\frac{ab}{cd}=\left(\frac{a+b}{c+d}\right)^2\left(2\right)\)
Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Câu 2:
\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+....+a2018}\)
\(\Rightarrow\frac{a1}{a2}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(1\right)\)
\(\frac{a2}{a3}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2\right)\)
..............
\(\frac{a2017}{a2018}=\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\left(2017\right)\)
Nhân các vế (1),(2)....(2017) ta được:
\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\cdot\cdot\cdot\cdot\frac{a2017}{a2018}=\frac{a1}{a2018}=\left(\frac{a1+a2+...+a2017}{a2+a3+...+a2018}\right)^{2017}\)
Vậy...
Câu 3:
\(x_2^2=x_1x_3\Rightarrow\frac{x1}{x2}=\frac{x2}{x3}\)
\(x_3^2=x_2x_4\Rightarrow\frac{x2}{x3}=\frac{x3}{x4}\)
\(x_4^2=x_3x_5\Rightarrow\frac{x3}{x4}=\frac{x4}{x5}\)
\(x_5^2=x_4x_6\Rightarrow\frac{x4}{x5}=\frac{x5}{x6}\)
Đến đây thfi làm giống câu 2
cho x1, x2 , x3 là 3 số thực khác 0 thỏa mãn x1 + x2 + x3 = a ; x1x2 + x2x3 + x1x3 = 0 ; x1x2x3 = b
CMR: a/b < 0
Giúp mình với:
1. Cho 2 số nguyên a và b ( b \(\ne\)0 ). Khẳng định nào dưới đây là đúng ?
A. \(\frac{-\left(-a\right)}{-b}=\frac{-a}{-b}\) B. \(\frac{-a}{-b}=\frac{-a}{-\left(-b\right)}\) C. \(\frac{-\left(-a\right)}{-b}=\frac{a}{b}\) D. \(\frac{-\left(-a\right)}{-\left(-b\right)}=\frac{a}{b}\)
2. Cho 2 phân số bằng nhau \(\frac{a}{b}=\frac{c}{d}\) (a,b,c,d \(\varepsilon\)Z; b,d \(\ne\)0). Chứng minh rằng \(\frac{a\pm b}{_{ }b}=\frac{c\pm d}{d}\)
Bài 1: D
Bài 2:
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}\pm1=\frac{c}{d}\pm1\)
\(\Rightarrow\frac{a\pm b}{b}=\frac{c\pm d}{d}\)(đpcm)
a, Cho các số a,b,c,d nguyên dương đôi một khác nhau thoả mãn:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\). CMR: A = abcd là số chính phương
b, Giải phương trình: \(\left(\frac{x+1}{x-2}\right)^2+\frac{x+1}{x-4}-3\left(\frac{2x-4}{x-4}\right)^2=0\)
c, Cho x,y,z dương và x + y + z = 1. CMR: \(\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\ge9\)
d, Tìm nghiệm nguyên dương của phương trình: \(\frac{2016}{x+y}+\frac{x}{y+2015}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)
a) Ta có:
\(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}=6\)
\(\Leftrightarrow\left[\left(\frac{2a+b}{a+b}-1\right)+\left(\frac{2b+c}{b+c}-1\right)-1\right]+\left[\left(\frac{2c+d}{c+d}-1\right)+\left(\frac{2d+a}{d+a}-1\right)-1\right]=0\)
\(\Leftrightarrow\left(\frac{a}{a+b}+\frac{b}{b+c}-1\right)+\left(\frac{c}{c+d}+\frac{d}{d+a}-1\right)=0\)
\(\Leftrightarrow\left(\frac{a.\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}+\frac{b.\left(a+b\right)}{\left(a+b\right).\left(b+c\right)}-\frac{\left(a+b\right).\left(b+c\right)}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{c.\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}+\frac{d.\left(c+d\right)}{\left(c+d\right).\left(d+a\right)}-\frac{\left(c+d\right).\left(d+a\right)}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\left(\frac{ab+ac}{\left(a+b\right).\left(b+c\right)}+\frac{ab+b^2}{\left(a+b\right).\left(b+c\right)}-\frac{ab+ac+b^2+bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac}{\left(c+d\right).\left(d+a\right)}+\frac{cd+d^2}{\left(c+d\right).\left(d+a\right)}-\frac{cd+ac+d^2+ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\left(\frac{ab+ac+ab+b^2-ab-ac-b^2-bc}{\left(a+b\right).\left(b+c\right)}\right)+\left(\frac{cd+ac+cd+d^2-cd-ac-d^2-ad}{\left(c+d\right).\left(d+a\right)}\right)=0\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}+\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}=0\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=-\frac{cd-ad}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{ab-bc}{\left(a+b\right).\left(b+c\right)}=\frac{ad-cd}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{b.\left(a-c\right)}{\left(a+b\right).\left(b+c\right)}=\frac{d.\left(a-c\right)}{\left(c+d\right).\left(d+a\right)}\)
\(\Leftrightarrow\frac{b}{\left(a+b\right).\left(b+c\right)}=\frac{d}{\left(c+d\right).\left(d+a\right)}\) (vì \(a;b;c;d\) là số nguyên dương).
\(\Leftrightarrow b\left(c+d\right).\left(d+a\right)=d\left(a+b\right).\left(b+c\right)\)
\(\Leftrightarrow\left(bc+bd\right).\left(d+a\right)=\left(ad+bd\right).\left(b+c\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow bd^2+abc=b^2d+acd\)
\(\Leftrightarrow bd^2-b^2d=acd-abc\)
\(\Leftrightarrow bd.\left(d-b\right)=ac.\left(d-b\right)\)
\(\Leftrightarrow bd.\left(d-b\right)-ac.\left(d-b\right)=0\)
\(\Leftrightarrow\left(d-b\right).\left(bd-ac\right)=0\)
Vì \(a;b;c;d\) là số nguyên dương.
\(\Rightarrow d-b>0\)
\(\Rightarrow d-b\ne0.\)
\(\Leftrightarrow bd-ac=0\)
\(\Leftrightarrow bd=ac.\)
Lại có:
\(A=abcd\)
\(\Rightarrow A=ac.bd\)
\(\Rightarrow A=ac.ac\)
\(\Rightarrow A=\left(ac\right)^2.\)
\(\Rightarrow A=abcd\) là số chính phương (đpcm).
Chúc bạn học tốt!
1. Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr:
a,\(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-b^n}\) ( \(n\in R\))
b, \(\frac{a}{a+b}=\frac{c}{c+d}\)
1. Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\). Cmr:
a,\(\frac{a^n+b^n}{c^n+d^n}=\frac{a^n-b^n}{c^n-b^n}\) ( \(n\in R\))
b, \(\frac{a}{a+b}=\frac{c}{c+d}\)
a)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{\left(bk\right)^n+b^n}{\left(dk\right)^n+d^n}=\frac{\left(bk\right)^n-b^n}{\left(dk\right)^n-d^n}\)\(=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}\)
Xét VT \(\frac{a^n+b^n}{c^n+d^n}=\frac{b^nk^n+b^n}{d^nk^n+d^n}=\frac{b^n\left(k^n+1\right)}{d^n\left(k^n+1\right)}=\frac{b^n}{d^n}\left(1\right)\)
Xét VP \(\frac{a^n-b^n}{c^n-d^n}=\frac{b^nk^n-b^n}{d^nk^n-d^n}=\frac{b^n\left(k^n-1\right)}{d^n\left(k^n-1\right)}=\frac{b^n}{d^n}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
b)Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{bk}{bk+b}=\frac{dk}{dk+d}\)
Xét VT \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\left(1\right)\)
Xét VP \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\left(2\right)\)
Từ (1) và (2) ta có Đpcm
bài 1: từ \(\left(\frac{a}{c}\right)^n=\frac{a^n+b^n}{c^n+d^n}\)với n thuộc N suy ra : \(\frac{a}{b}=\frac{c}{d}\)nếu là số tự nhiên lẻ với \(\frac{a}{b}=\frac{c}{d}=\frac{-c}{d}\)nếu n là số tự nhiên chẵn