Những câu hỏi liên quan
NQ
Xem chi tiết
WR
Xem chi tiết
US
31 tháng 1 2016 lúc 21:45

bạn chơi gunny ko

Bình luận (0)
NT
Xem chi tiết
CT
26 tháng 1 2016 lúc 20:06

tick vào đúng 0 sẽ ra kết quả đấy.

Bình luận (0)
TT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NT
27 tháng 7 2023 lúc 14:03

a: góc FEB+góc FBE=45+45=90 độ

=>EF vuông góc BC

b: ΔDFC vuông tại F có góc C=45 độ

nên ΔDFC vuông cân tại F

=>FD=FC

c: Xét ΔBEC có

EF,CA là đường cao

EF cắt CA tại D

=>D là trực tâm

=>BD vuông góc CE

Bình luận (0)
NK
Xem chi tiết
NT
6 tháng 2 2021 lúc 20:38

a) Xét ΔAED và ΔCEF có 

EA=EC(E là trung điểm của AC)

\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)

ED=EF(gt)

Do đó: ΔAED=ΔCEF(c-g-c)

⇒AD=CF(hai cạnh tương ứng)

mà AD=BD(D là trung điểm của AB)

nên CF=BD(đpcm)

Ta có: ΔAED=ΔCEF(Cmt)

nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)

mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong

nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)

hay CF//AB(đpcm)

 

Bình luận (0)
KN
25 tháng 1 2022 lúc 21:23

a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)

Bình luận (0)
H24
Xem chi tiết
LD
Xem chi tiết