HC

cho tam giác ABC. Hãy tìm trên cạnh AB điểm E, trên cạnh AC điểm F sao cho EF//BC và AE = CF.

NA
30 tháng 12 2017 lúc 16:39

A B C D E F

Lời giải: Gọi ssooj dài AB = c , AC = b, AE = BF = x thì AF = (b -x) .Vì EF//BC nên ta có :   \(\frac{AE}{AB}=\frac{AF}{AC}\) Tức là \(\frac{x}{c}=\frac{b-x}{b}\)Theo tính chất của dãy tỷ số bằng nhau ta có :    \(\frac{x}{c}=\frac{b-x}{b}=\frac{x+\left(b-x\right)}{c+b}=\frac{b}{b+c}\) Tức là \(\frac{x}{c}=\frac{b}{b+c}\) Suy ra cách xác định điểm E như sau (Xem hình vẽ ở trên) : 

         - Kéo dài AC về phía C, lấy điểm D sao cho CD = AB = c

          -  Nối  BD. Kẻ qua C đường thẳng (d) song song với BD, giao điểm của đường thẳng (d) với cạnh AB chính là điểm E 

          - Kẻ qua E đường thẳng \(\left(\Delta\right)\)giao điểm của \(\left(\Delta\right)\)với cạnh AC chính là ddirrt, F.

CHÚC CÁC ANH CHỊ CHĂM CHỈ HỌC, HỌC GIỎI

Bình luận (0)

Các câu hỏi tương tự
NQ
Xem chi tiết
WR
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
WR
Xem chi tiết
DH
Xem chi tiết