Lời giải: Gọi ssooj dài AB = c , AC = b, AE = BF = x thì AF = (b -x) .Vì EF//BC nên ta có : \(\frac{AE}{AB}=\frac{AF}{AC}\) Tức là \(\frac{x}{c}=\frac{b-x}{b}\)Theo tính chất của dãy tỷ số bằng nhau ta có : \(\frac{x}{c}=\frac{b-x}{b}=\frac{x+\left(b-x\right)}{c+b}=\frac{b}{b+c}\) Tức là \(\frac{x}{c}=\frac{b}{b+c}\) Suy ra cách xác định điểm E như sau (Xem hình vẽ ở trên) :
- Kéo dài AC về phía C, lấy điểm D sao cho CD = AB = c
- Nối BD. Kẻ qua C đường thẳng (d) song song với BD, giao điểm của đường thẳng (d) với cạnh AB chính là điểm E
- Kẻ qua E đường thẳng \(\left(\Delta\right)\)giao điểm của \(\left(\Delta\right)\)với cạnh AC chính là ddirrt, F.
CHÚC CÁC ANH CHỊ CHĂM CHỈ HỌC, HỌC GIỎI