Luyện tập về ba trường hợp bằng nhau của tam giác

NK

Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Trên tia đối của tia ED lấy điểm F sao cho EF = ED. Chứng minh rằng:

a)     CF = BD và CF // AB.

b)     DE // BC và BC = 2. DE.

NT
6 tháng 2 2021 lúc 20:38

a) Xét ΔAED và ΔCEF có 

EA=EC(E là trung điểm của AC)

\(\widehat{AED}=\widehat{CEF}\)(hai góc đối đỉnh)

ED=EF(gt)

Do đó: ΔAED=ΔCEF(c-g-c)

⇒AD=CF(hai cạnh tương ứng)

mà AD=BD(D là trung điểm của AB)

nên CF=BD(đpcm)

Ta có: ΔAED=ΔCEF(Cmt)

nên \(\widehat{ADE}=\widehat{CFE}\)(hai góc tương ứng)

mà \(\widehat{ADE}\) và \(\widehat{CFE}\) là hai góc ở vị trí so le trong

nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song)

hay CF//AB(đpcm)

 

Bình luận (0)
KN
25 tháng 1 2022 lúc 21:23

a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm) a) Xét ΔAED và ΔCEF có EA=EC(E là trung điểm của AC) ˆ A E D = ˆ C E F (hai góc đối đỉnh) ED=EF(gt) Do đó: ΔAED=ΔCEF(c-g-c) ⇒AD=CF(hai cạnh tương ứng) mà AD=BD(D là trung điểm của AB) nên CF=BD(đpcm) Ta có: ΔAED=ΔCEF(Cmt) nên ˆ A D E = ˆ C F E (hai góc tương ứng) mà ˆ A D E và ˆ C F E là hai góc ở vị trí so le trong nên AD//CF(Dấu hiệu nhận biết hai đường thẳng song song) hay CF//AB(đpcm)

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
PN
Xem chi tiết
CA
Xem chi tiết
DN
Xem chi tiết
BT
Xem chi tiết
LN
Xem chi tiết
TH
Xem chi tiết
BM
Xem chi tiết
HP
Xem chi tiết