CMR: n.(n+1).(2n+1) chia hết cho 6 với mọi n thuộc N
cmr với mọi n thuộc N* thì 6^2n+1 + 5^n+2 chia hết cho 31
Xét n=0 => 62n+1 + 5n+2 = 31chia hết 31
Xét n=1 => 62n+1 + 5n+2 = 341 chia hết 31
Giả sử mệnh đề đúng với n = k,tức là có 62k+1 + 5k + 2,ta sẽ chứng minh mệnh đề đúng với n = k+1 tức là chứng minh 62k+3 + 5k+3
Ta có 62k+1 + 5k+2 = 36k .6+5k .25 chia hết 31
<=> 62k+3 + 5k+3 = 36k .216+5k .125
Xét hiệu : 62k+3 + 5k+3 − 62k+1 − 5k+2 = 36k .216+5k .125−36k .6−5k .25
= 36k .210+5k .100 = 36k .207+5k .93−7(36k−5k ) Có 217 chia hết 31, 93 chia hết 31và 36k−5k chia hết 36 - 5 = 31
=> 62n+3 + 5k+3 − 62k+1 − 5k+2 chia hết 31
. Mà 62k+1 + 5k+2 chia hết 31 nên 62k+3 + 5k+3 chia hết 31
Phép quy nạp được chứng minh hoàn toàn,ta có đpcm
:D
Ta có: \(6^2\equiv5\left(mod31\right)\)
\(\Rightarrow6^{2n}\equiv5^n\left(mod31\right)\)
\(6^{2n+1}\equiv6.5^n\left(mod31\right)\)
Lại có: 5\(5\equiv5\left(mod31\right)\)
\(\Rightarrow5^n\equiv5^n\left(mod31\right)\)
\(\Rightarrow5^{n+2}\equiv25.5^n\left(mod31\right)\)
\(\Rightarrow6^{2n+1}+5^{n+2}\equiv31.5^n\left(mod31\right)\)
\(\Rightarrow6^{2n+1}+5^{n+2}⋮31\)
CMR nếu với mọi n thuộc N
a) (5n+7)(4n+6) chia hết cho 2
b) (8n+1)(6n+5) ko chia hết 2
c) n.(n+1)(2n+1) chia hết cho 6
a) \(\left(5n+7\right)\left(4n+6\right)\)
\(=\left(5n+7\right)4n+\left(5n+7\right)6\)
\(=20n^2+28n+30n+32\)
\(=20n^2+58n+32\)
Vì \(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)
b) \(\left(8n+1\right)\left(6n+5\right)\)
\(=\left(8n+1\right)6n+\left(8n+1\right)5\)
\(=48n^2+6n+40n+5\)
\(=48n^2+46n+5\)
Vì \(\left(48n^2+46n\right)⋮2\) mà \(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)
c) \(n\left(n+1\right)\left(2n+1\right)\)
\(=n\left(n+1\right)\left(n-1+n-2\right)\)
\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)
Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\) và \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)
Bài 1: cmr 3^105 +4^105 chia hết cho 13
Bài 2 : cmr 2^70 +3^70 chia hết cho 13
Bài 3 : cmr
a)( 6^2n+1) + (5^n) +2 chia hết cho 31 với mọi n thuộc N*
b) (2^2^2n+1) + 3 chia hết cho 7 với mọi n thuộc N
Bài 5 : tìm dư trong phép chia
a) 1532 -1 cho 9
b)5^70 + 7^50 cho 12
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
bài này mà là tón 8 á?mik nghĩ là toán 6
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
giup voi
Với mọi n thuộc N,cmr:
a) 9.10^n+18 chia hết cho 27
b)9^24+14 chia hết cho 5
c)6^2n+19-2^(n+1) chia hết cho 17
d)6^(2n+1)+5^(n+2) chia hết cho 31
help............me
a)9.10n+18
=9.(10n+2)
=9.[1000....0000(n chữ số 0) +2]
=9.[1000....0002(n-1 chứ số 0)]
ta thấy + 9.[1000....0002(n-1 chứ số 0)] chia hết cho 9
+1000...0002(n-1 chữ số 0) chia hết cho 3 (vì tổng các chữ số của nó là 3 chia hết cho 3)
=>9.[1000....0002(n-1 chứ số 0)] chia hết cho 27 hay 9.10n+18 chia hết cho 27
a) n. (n + 5) - (n - 3). (n + 2) chia hết cho 6
b) (n2 + 3n - 1). (n + 2) - n3 + 2 chia hết cho 5
c) (6n + 1). (n + 5) - (3n + 5). (2n - 1) chia hết cho 2
d) (2n - 1). (2n + 1) - (4n - 3). (n - 2) - 4 chia hết cho 11
Giúp e vs ạ😭😭😭
1. CMR: 1^2+3^2+5^2+...+(2n-1)^2= (n*(4n^2-1))/3 (vs mọi n thuộc Z+)
2. CMR: 4^n+15*n-1 chia hết cho 9 (vs mọi n thuộc Z+)
3. CMR: n^3+11*n chia hết cho 6 (vs mọi n thuộc Z+)
1. Xét n=1
VT = 12 = 1
VP = \(\dfrac{n.\left(4n^2-1\right)}{3}=\dfrac{1.\left(4.1-1\right)}{3}=1\)
=> VT = VP
=> Mệnh đề đúng.
+) Giả sử với n = k , mệnh đề đúng hay: \(1^2+3^2+5^2+...+\left(2k-1\right)^2=\dfrac{k.\left(4k^2-1\right)}{3}\)+) Ta phải chứng minh với n = k + 1, mệnh đề cũng đúng, tức là: \(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{\left(k+1\right).\left(4.\left(k+1\right)^2-1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(1\right)\)
+) Thật vậy, với n = k + 1, theo giả thiết quy nạp, ta có:
\(1^2+3^2+5^2+...+\left(2k-1\right)^2+\left(2k+1\right)^2=\dfrac{k.\left(4.k^2-1\right)}{3}+\left(2k+1\right)^2\\ =\dfrac{k.\left(4k^2-1\right)+3.\left(2k+1\right)^2}{3}=\dfrac{4k^3-k+12k^2+12k+3}{3}\\ =\dfrac{\left(k+1\right)\left(2k+3\right)\left(2k+1\right)}{3}\\ =\dfrac{\left(k+1\right)\left(4k^2+8k+3\right)}{3}\left(2\right)\)+) Từ (1) và (2) => Điều phải chứng minh
2. +) Xét n = 1
\(< =>4^1+15.1-1=18⋮9\)
=> với n=1 , mệnh đề đúng.
+) Giả sử với n=k , mệnh đề đúng, tức là: \(4^k+15k-1⋮9\)
+) Ta phải chứng minh với n = k + 1 mệnh đề cũng đúng, tức là: \(4^{k+1}+15\left(k+1\right)-1⋮9\)
Thật vậy: với n = k + 1, theo giả thiết quy nạp, ta có:
\(4^{k+1}+15\left(k+1\right)-1=4.4^k+15k+15-1\\ =4.4^k+4.15k-4-3.15k+18=4.\left(4^k+15k-1\right)-\left(45k-18\right)⋮9\)=> Điều phải chứng minh.