Giair phương trình nghiệm nguyên:x2+(x+1)2=a2
đồng thời x+1 là số chính phương
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
giải phương trình nghiệm nguyên:
x2-x=y2-1
Giair phương trình nghiệm nguyên: \(y^2=1+x+x^2+x^3+x^4\)
\(4y^2=4x^4+4x^3+4x^2+4x+4\)
Ta có:
\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x\right)^2+\left(3x^2+4x+4\right)>\left(2x^2+x\right)^2\)
\(4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2-5x^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}\left(2y\right)^2=\left(2x^2+x+1\right)^2\\\left(2y\right)^2=\left(2x^2+x+2\right)^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-3=0\\5x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=3\end{matrix}\right.\)
- Với \(x=-1\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=0\Rightarrow y^2=1\Rightarrow y=\pm1\)
- Với \(x=3\Rightarrow y^2=121\Rightarrow y=\pm11\)
Giair phương trình nghiệm nguyên: \(x^2\left(x-y\right)=5\left(y-1\right)\)
Giải phương trình nghiệm nguyên:
x2-y2=1998
https://hoc24.vn/cau-hoi/chung-minh-rang-phuong-trinh-sau-khong-co-nghiem-nguyena-x2-y21998b-x2y21994.262907021445
y2 = x2 - 1998
x2 = 1998 + y2
y = \(\sqrt{x^2-1998}\)
x = \(\sqrt{1998+y^2}\)
y = x - \(\sqrt{1998}\)
x = y + \(\sqrt{1998}\)
Tìm nghiệm nguyên của phương trình để phương trình là số chính phương
x4+x3+x2+x+1
không nhìn đề ak.đa bảo là số chính phương thì vế trái của nó là 1 sô chính phương hay nói cách khác là =k2
Giair phương trình nghiệm nguyên:x2+(x+1)2=a2
Cho phương trình x2-ax+1=0 với a là tham số nguyên lớn hơn 1.
Chứng minh rằng phương trình đã cho có nghiệm x và đồng thời x + 1/x là số nguyên dương.
Cho phương trình \(x^2-\left(m+1\right)x+m-4=0\)
m là tham số
a) Giair pt khi m=1
b) Tìm giá trị của m để pt có 2 nghiệm \(x_1,x_2\)thỏa mãn
(\(x^2_1\)\(-mx_1\)\(+m\))(\(x^{2_2}-mx_2+m\))=2
a: Khi m=1 thì phương trình sẽ là x^2-2x-3=0
=>x=3 hoặc x=-1
b: Δ=(m+1)^2-4(m-4)
=m^2+2m+1-4m+16
=m^2-2m+17
=(m-1)^2+16>=16>0
=>Phương trình luôn có hai nghiệm phân biệt
x1+x2=m+1;x2x1=m-4
(x1^2-mx1+m)(x2^2-mx2+m)=2
=>(x1*x2)^2-m*x2*x1^2+m*x1^2-m*x1*x2^2+m*x1*x2-m^2*x1+m*x2^2-m^2*x2+m^2=2
=>(x1*x2)^2-m*x1*x2(x1+x2)+mx1^2+m*(m-4)-m^2*x1+m*x2^2-m^2*x2+m^2=2
=>(m-4)^2-m*(m-4)(m+1)+m(m-4)-m^2(x1+x2)+m*(x1^2+x2^2)+m^2=2
=>(m-4)^2-m(m^2-3m-4)+m^2-4m-m^2(m+1)+m*[(m+1)^2-2(m-4)]+m^2=2
=>m^2-8m+16-m^3+3m^2+4m+m^2-4m-m^3-m^2+m^2+m[m^2+2m+1-2m+8]=2
=>-2m^3+3m^2-8m+16+m^3+9m-2=0
=>-m^3+3m^2+m+14=0
=>\(m\simeq4,08\)
Bài 1 :Chứng tỏ rằng phương trình : mx - 3 = 2m - x - 1 luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
Bài 2 : Cho 2 số chính phương liên tiếp. CMR tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ.