HP

Cho phương trình \(x^2-\left(m+1\right)x+m-4=0\)

m là tham số 
a) Giair pt khi m=1

b) Tìm giá trị của m để pt có 2 nghiệm \(x_1,x_2\)thỏa mãn 

(\(x^2_1\)\(-mx_1\)\(+m\))(\(x^{2_2}-mx_2+m\))=2

NT
18 tháng 4 2023 lúc 22:32

a: Khi m=1 thì phương trình sẽ là x^2-2x-3=0

=>x=3 hoặc x=-1

b: Δ=(m+1)^2-4(m-4)

=m^2+2m+1-4m+16

=m^2-2m+17

=(m-1)^2+16>=16>0

=>Phương trình luôn có hai nghiệm phân biệt

x1+x2=m+1;x2x1=m-4

(x1^2-mx1+m)(x2^2-mx2+m)=2

 

=>(x1*x2)^2-m*x2*x1^2+m*x1^2-m*x1*x2^2+m*x1*x2-m^2*x1+m*x2^2-m^2*x2+m^2=2

=>(x1*x2)^2-m*x1*x2(x1+x2)+mx1^2+m*(m-4)-m^2*x1+m*x2^2-m^2*x2+m^2=2

=>(m-4)^2-m*(m-4)(m+1)+m(m-4)-m^2(x1+x2)+m*(x1^2+x2^2)+m^2=2

=>(m-4)^2-m(m^2-3m-4)+m^2-4m-m^2(m+1)+m*[(m+1)^2-2(m-4)]+m^2=2

=>m^2-8m+16-m^3+3m^2+4m+m^2-4m-m^3-m^2+m^2+m[m^2+2m+1-2m+8]=2

=>-2m^3+3m^2-8m+16+m^3+9m-2=0

=>-m^3+3m^2+m+14=0

=>\(m\simeq4,08\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HL
Xem chi tiết
NK
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
OP
Xem chi tiết
NH
Xem chi tiết