Giai PT : \(\frac{2a+b+c-3x}{a}+\frac{a+2b+c-3x}{b}+\frac{a+b+2c-3x}{c}=6-\frac{9x}{a+b+c}\)
giải phương trình sau
\(\frac{2a+b+c-3x}{a}+\frac{a+2b+c-3x}{b}+\frac{\left(a+b+2c-3x\right)}{c}=6-\frac{9x}{a+b+c}\)
Giai PT : \(\dfrac{2a+b+c-3x}{a}+\dfrac{a+2b+c-3x}{b}+\dfrac{a+b+2c-3x}{c}=6-\dfrac{9x}{a+b+c}\)
Giải phương trình với các tham số a , b , c :
\(\frac{2a+b+c-3x}{a}+\frac{a+2b+c-3x}{b}+\frac{a+b+2c-3x}{c}=6-\frac{9}{a+b+c}\)
GIẢI PT theo a,b,c:
a) a2x-ab=b2(x-1)
b) \(\frac{a\left(3x-1\right)}{5}\)-\(\frac{6x-17}{4}\)+\(\frac{3x+2}{10}\)=O
c) \(\frac{2a+b+c-3x}{a}\)+\(\frac{a+2b+c-3x}{b}\)+\(\frac{a+b+2c-3x}{c}\)=6 - \(\frac{9x}{a+b+c}\)
d)\(\frac{x-ab}{a+b}\)+\(\frac{x-bc}{b+c}\)+\(\frac{x-ca}{c+a}\)= a+b+c
Giải phương trình sau
\(\frac{2a+b+c-3x}{a}+\frac{a+2b+c-3x}{b}+\frac{a+b+2c-3x}{c}=\frac{54x}{a+b+c}\)
a,b,c là tham số nhé. mình lấy trong sách học tốt toán, các bạn giúp với
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3
Tìm x biết
a)\(||3x-\frac{7}{3}|-2|=7\)
b) Cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)(a, b, c, d > 0). Tính
A = \(\frac{2013a-2012b}{c+d}+\frac{2013b-2012c}{a+d}+\frac{2013c-2012d}{a+b}+\frac{2013d-2012a}{b+c}\)
Bài giải
a, \(\left| |3x-\frac{7}{3} | -2\right|=7\)
\(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|-2=-7\\|3x-\frac{7}{3}|-2=7\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}|3x-\frac{7}{3}|=-5\text{ ( loại) }\\|3x-\frac{7}{3}|=9\end{cases}}\) \(\Rightarrow\text{ }\left|3x-\frac{7}{3}\right|=9\) \(\Rightarrow\orbr{\begin{cases}3x-\frac{7}{3}=-9\\3x-\frac{7}{3}=9\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}3x=\frac{-20}{3}\\3x=\frac{34}{3}\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=-\frac{20}{9}\\x=\frac{34}{9}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-\frac{20}{9}\text{ ; }\frac{34}{9}\right\}\)
Bài 2
\(\left|3x-101\right|=200\)
\(\Rightarrow3x-101=200\) hoặc \(3x-101=-200\)
\(\Rightarrow3x=301\) hoặc \(3x=-99\)
\(\Rightarrow x=\frac{301}{3}\) hoặc \(x=-33\)
Bài 3:
\(\left(7x-1\right)^{12}=25^6\)
\(\Rightarrow\left(7x-1\right)^{12}=\left(5^2\right)^6\)
\(\Rightarrow\left(7x-1\right)^{12}=5^{12}\)
\(\Rightarrow7x-1=5\)
\(\Rightarrow7x=6\)
\(\Rightarrow x=\frac{6}{7}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)