Cho S = 1 + 3 + 32 + ... + 398 + 399
Chứng tỏ rằng S chia hết cho 5 ..Help me !
:(
Cho S = 1-3 + 32-33 +....+398-399 . Chứng minh rằng S chia hết cho 20 , giúp mk nhanh nha
S = (1 - 3 + 32 - 33) + 34 . (1 - 3 + 32 - 33) + .... + 396 . (1 - 3 + 32 - 33)
S = (-20) + 34 . (-20) +.... + 396 . (-20)
S = (-20) . (1 + 34 +...+ 396)
\(\Rightarrow\)S \(⋮\) 20
(Ko bt có đúng ko)
*KO CHÉP MẠNG*
Cho S = 1+3+32+33+......+398. Chứng minh rằng S chia hết cho 13.
Giúp em với ạ, em cảm ơn
\(S=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13=13\left(1+3^3+...+3^{96}\right)⋮13\)
S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
= (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)
= (1 + 2) + 22(1 + 2) + 24(1 + 2) + 26(1 + 2)
= (1 + 2)(1 + 22 + 24 + 26)
= 3(1 + 22 + 24 + 26) \(⋮3\)(ĐPCM)
2S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
S = (1+2 ) + (22 + 23 ) + (24 + 25 ) + (26 +27)
S = 3 + 22(1+2) + 24(1+2) + 26(1+2)
S = 3+22.3 + 24.3 + 26 .3
S = 3(1+22 + 24 + 26 ) \(⋮\) 3
=> đpcm
Vì 1+2=3 \(⋮\)3 =>(1+2)+22+23+24+25+26+27=>S \(⋮\)3
Vậy S \(⋮\)9
Nhớ k cho mình nhé !
Cho A=1+3+32+33+....398.hãy chứng tỏ rằng A chia hết cho 13
mong mọi người giúp đỡ mik nha TIM TIM
\(A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{96}.13\)
\(=13\left(1+3^3+...+3^{96}\right)⋮13\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ A=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ A=13\left(1+3^3+...+3^{96}\right)⋮13\)
mn ơi mong mọi người trả lời câu hỏi giúp mik với ạ
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39.Chứng tỏ rằng S chia hết cho 13.
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
Cho S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39. Chứng tỏ rằng S chia hết cho 4.
\(S=1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+\left(3^6+3^7\right)+\left(3^8+3^9\right)\)
\(S=4+3^2\left(1+3\right)+3^4\left(1+3\right)+3^6\left(1+3\right)+3^8\left(1+3\right)\)
\(S=4+3^2.4+3^4.4+3^6.4+3^8.4\)
\(S=4\left(3^2+3^4+3^6+3^8\right)\)
\(4⋮4\\ \Rightarrow4\left(3^2+3^4+3^6+3^8\right)⋮4\\ \Rightarrow S⋮4\)
Cho S = 1+3+32+33+34+35+36+37+38+39.Chứng tỏ rằng S chia hết cho 4
Giup mik vs
\(S=1.\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(S=4x\left(1+3^2+...+3^8\right)\)
Vì 4 chia hết cho 4 nên S chia hết cho 4
Cho S = 1-3+32-33+...+398 - 399.
a) Chứng minh rằng : S là bội của -20.
b) Tính S, từ đó suy ra 3100 chia cho 4 dư 1.
a,
S = 1 - 3 + 32 - 33+...+398 - 399
S = 30 - 31 + 32 - 33+...+ 398 - 399
xét dãy số: 0; 1; 2; 3;...;99
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Dãy số trên có số số hạng là: (99 - 0): 1 + 1 = 100 (số)
100 : 4 = 25
Vậy ta nhóm 4 số hạng liên tiếp của tổng S thành 1 nhóm thì:
S = ( 1 - 3 + 32 - 33) +....+( 396 - 397 + 398 - 399)
S = - 20+...+ 396.(1 - 3 + 32 - 33)
S = - 20 +...+ 396.(-20)
S = -20.( 30 + ...+ 396) (đpcm)
b,
S = 1 - 3 + 32 - 33+...+ 398 - 399
3S = 3 - 32 + 33-...-398 + 399 - 3100
3S + S = - 3100 + 1
4S = - 3100 + 1
S = ( -3100 + 1): 4
S = - ( 3100 - 1) : 4
Vì S là số nguyên nên 3100 - 1 ⋮ 4 ⇒ 3100 : 4 dư 1 (đpcm)