Những câu hỏi liên quan
TL
Xem chi tiết
LH
12 tháng 6 2021 lúc 14:45

Có các phần tử của A là bội của 6

Các phần tử của B là bội của 15

Các phần tử của C là bội của 30

mà [6;15]=30

=> Những phần tử vừa chia hết cho 6; vừa chia hết cho 15 thì sẽ chia hết cho 30

Hay \(C=A\cap B\) 

Bình luận (0)
WR
Xem chi tiết
NT
23 tháng 3 2018 lúc 21:01

giả sử a>(=)b>(=)c

Bình luận (0)
FS
Xem chi tiết
H24
9 tháng 8 2019 lúc 18:19

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

Bình luận (0)
H24
9 tháng 8 2019 lúc 18:29

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
H24
14 tháng 11 2019 lúc 13:39

Cách nữa cho bài 2:

2a) Ta có: \(4\left(a^2+1+2\right)\left(1+1+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)

Hay \(4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2=VP\)

Như vậy ta quy bài toán về chứng minh: \(\left(b^2+3\right)\left(c^2+3\right)\ge4\left(2+\frac{\left(b+c\right)^2}{2}\right)\)

\(\Leftrightarrow b^2c^2+b^2+c^2+1\ge4bc\Leftrightarrow\left(bc-1\right)^2+\left(b-c\right)^2\ge0\)(đúng)

Đẳng thức xảy ra khi a = b = c = 1

b) Áp dụng BĐT Bunhiacopxki:\(\left(a^2+\frac{1}{4}+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+b^2+c^2+\frac{1}{2}\right)\ge\frac{1}{4}\left(a+b+c+1\right)^2\)

\(\Rightarrow\frac{5}{4}\left(a^2+1\right)\left(b^2+c^2+\frac{3}{4}\right)\ge\frac{5}{16}\left(a+b+c+1\right)^2\)

Từ đó ta có thể quy bài toán về chứng minh: \(\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(b^2+c^2+\frac{3}{4}\right)\)

...

Bài 3:Sửa đề a, b, c >0

Có:  \(\frac{a^3}{b^2}+\frac{a^3}{b^2}+b\ge3\sqrt[3]{\frac{a^6}{b^3}}=\frac{3a^2}{b}\)

Tương tự: \(\frac{2b^3}{c^2}+c\ge\frac{3b^2}{c};\frac{2c^3}{a^2}+a\ge\frac{3c^2}{a}\)

Cộng theo vế 3 BĐT trên: \(2\left(\frac{a^3}{b^2}+\frac{b^3}{c^2}+\frac{c^3}{a^2}\right)+a+b+c\ge3\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(=2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\)

\(\ge2\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+a+b+c\)

Từ đó ta có đpcm.

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HM
22 tháng 9 2023 lúc 12:51

\(\left. \begin{array}{l}M \in AC\\AC \subset \left( {ABC} \right)\end{array} \right\} \Rightarrow M \in \left( {ABC} \right)\). Vậy mệnh đề A đúng.

\(\left. \begin{array}{l}C \in AM\\AM \subset \left( {ABM} \right)\end{array} \right\} \Rightarrow C \in \left( {ABM} \right)\). Vậy mệnh đề B đúng.

\(\left. \begin{array}{l}A \in CM\\CM \subset \left( {MBC} \right)\end{array} \right\} \Rightarrow A \in \left( {MBC} \right)\). Vậy mệnh đề C đúng.

Vậy mệnh đề D sai.

Chọn D.

Bình luận (0)
LM
Xem chi tiết
TM
Xem chi tiết
XH
26 tháng 8 2017 lúc 19:18

32ac+b

Bình luận (0)
B1
26 tháng 8 2017 lúc 19:26

(d) qua A(5; 6) : y = mx - 5m + 6 (1) 
(C) : (x - 1)² + (y - 2)² = 1 (2) 
Thay y từ (1) vào (2) ta có phương trình hoành độ giao điểm của (d) và (C) 
(x - 1)² + (mx - 5m + 4)² = 1 
Khai triển ra pt bậc 2 : (m² + 1)x² - 2(5m² - 4m + 1)x + 25m² - 40m + 17 = 0 (*) 
Để (d) tiếp xúc (C) thì (*) phải có nghiệm kép 
∆' = (5m² - 4m + 1)² - (m² + 1)(25m² - 40m + 17) = - 4(3m² - 8m + 4) = 4(m - 2)(2 - 3m) = 0 => m = 3/2; m = 2 
KL : Có 2 đường thẳng cần tìm 
(d1) : y = (3/2)(x - 1) 
(d2) : y = 2x - 4 

∆ ∠ ∡ √ ∛ ∜ x² ⁻¹ ∫ π × ∵ ∴ | | , ⊥,∈∝ ≤ ≥− ± , ÷ ° ≠ → ∞, ≡ , ≅ , ∑,∪,¼ , ½ , ¾ , ≈ , [-b ± √(b² - 4ac) ] / 2a Σ Φ Ω α β γ δ ε η θ λ μ π ρ σ τ φ ω ё й½ ⅓ ⅔ ¼ ⁰ ¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁼ ⁽ ⁾ ⁿ ₁ ₂ ₃₄₅ ₆ ₇ ₈ ₉ ₊ ₋ ₌ ₍ ₎ ∊ ∧ ∏ ∑ ∠ ,∫ ∫ ψ ω Π∮ ∯ ∰ ∇ ∂ • ⇒ ♠ ★

Bình luận (0)
NK
5 tháng 7 2020 lúc 14:33

tjc4 vweftbf3sgrhrbn dkgmny09-695th shtyrdu495p6by

irevbfgt4t6w3tb2fygye-5gnft94v5e4gdentv4grdmnu4

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
AN
28 tháng 11 2017 lúc 9:00

\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)

\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)

\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)

\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

Bình luận (0)
LH
10 tháng 12 2017 lúc 13:42

\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}.\)

\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)

\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)

\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)

Bình luận (0)
TH
Xem chi tiết
AH
8 tháng 5 2019 lúc 10:25

Lời giải:

\(\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\geq \frac{3}{4}\)

\(\Leftrightarrow \frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}\geq \frac{3}{4}\)

\(\Leftrightarrow 4[a(c+1)+b(a+1)+c(b+1)]\geq 3(a+1)(b+1)(c+1)\)

\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3[(ab+bc+ac)+(a+b+c)+abc+1]\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 3(abc+1)=6\)

Điều này luôn đúng do theo BĐT AM-GM thì \(ab+bc+ac+a+b+c\geq 6\sqrt[6]{(abc)^3}=6\)

Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$

Bình luận (0)
DN
Xem chi tiết
PP
Xem chi tiết
HH
13 tháng 6 2018 lúc 9:02

thay trực tiếp giả thiết ta có

\(\sqrt{\left(a^2+1\right)}=\sqrt{a^2+ab+bc+ac}=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+c\right)\left(a+b\right)}\)

tương tự ta có

\(\sqrt{b^2+1}=\sqrt{\left(b+a\right)\left(b+c\right)}\)

\(\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(c+b\right)}\)

nên

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(\left(a+b\right)\left(a+c\right)\left(b+c\right)\right)^2}=\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\)

\(a,b,c\in Q\) nên \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\in Q\Rightarrowđpcm\)

Bình luận (0)