tính:2/3 xy(3x2y-3yx+y2)
2/3 xy(-3x2y-3yx+y2)
\(=-2x^3y^2-2x^2y^2+\dfrac{2}{3}xy^3\)
Tính:2/3 xy(3x2y-3yx+y2)
Tính:2/3xy(3x2y-3yx+y2)
bài 5:
a) \(\left(\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5\right)\) : \(\dfrac{3}{5}\)ax3
b) (9x2y3 - 15x4y4) : 3x2y - (2 - 3x2y)y2
c) (6x2 - xy) : x + (2x3y + 3xy2) : xy - (2x - 1)x
d) (x2 - xy) : x + (6x2y5 - 9x3y4 + 15x4y2) : \(\dfrac{3}{2}\)x2y3
a) \(\left(\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5\right):\dfrac{3}{5}ax^3\)
\(=\dfrac{\dfrac{3}{5}a^6x^3+\dfrac{3}{7}a^3x^4-\dfrac{9}{10}ax^5}{\dfrac{3}{5}ax^3}\)
\(=\dfrac{\dfrac{3}{5}ax^3\left(a^5+\dfrac{5}{7}a^2x-\dfrac{3}{2}x^2\right)}{\dfrac{3}{5}ax^3}\)
\(=a^5+\dfrac{5}{7}a^2x-\dfrac{3}{2}x^2\)
b) \(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)\cdot y^2\)
\(=\dfrac{3x^2y\left(3y^2-5x^2y^3\right)}{3x^2y}-2y^2+3x^2y^3\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c) \(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=\dfrac{6x^2-xy}{x}+\dfrac{2x^3y+3xy^2}{xy}-x\left(2x-1\right)\)
\(=\dfrac{x\left(6x-y\right)}{x}+\dfrac{xy\left(2x^2+3y\right)}{xy}-2x^2+x\)
\(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d) \(\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
\(=\dfrac{x^2-xy}{x}+\dfrac{6x^2y^5-9x^3y^4+15x^4y^2}{\dfrac{3}{2}x^2y^3}\)
\(=\dfrac{x\left(x-y\right)}{x}+\dfrac{\dfrac{3}{2}x^2y^2\left(4y^3-6xy^2+10x^2\right)}{\dfrac{3}{2}x^2y^3}\)
\(=x-y+\dfrac{4y^3-6xy^2+10x^2}{y}\)
Cho A = 3 x 3 y 2 + 2 x 2 y - x y v à B = 4 x y - 3 x 2 y + 2 x 3 y 2 + y 2
Tính A + B
A. 5 x 3 y 2 - x 2 y - 3 x y + y 2
B. 5 x 3 y 2 + 5 x 2 y + 5 x y + y 2
C. 5 x 3 y 2 + x 2 y + 3 x y + y 2
D. 5 x 3 y 2 - x 2 y + 3 x y + y 2
Ta có
A + B = 3 x 3 y 2 + 2 x 2 y − x y + 4 x y − 3 x 2 y + 2 x 3 y 2 + y 2 = 3 x 3 y 2 + 2 x 3 y 2 + 2 x 2 y − 3 x 2 y + ( − x y + 4 x y ) + y 2 = 5 x 3 y 2 − x 2 y + 3 x y + y 2
Chọn đáp án D
Tính :
(9x2y3-12x4y4):3x2y-(2-3x2y)y2
\(\dfrac{9x^2y^3-12x^4y^4}{3x^2y}-\left(2-3x^2y\right)\cdot y^2\)
\(=\dfrac{3x^2y\cdot3y^2-3x^2y\cdot4x^2y^3}{3x^2y}-2y^2+3x^2y^3\)
\(=\dfrac{3x^2y\left(3y^2-4x^2y^3\right)}{3x^2y}-2y^2+3x^2y^3\)
\(=3y^2-4x^2y^3-2y^2+3x^2y^3\)
\(=y^2-x^2y^3\)
phân tích đa thức thành nhân tử 2 ẩn :
a) 2x2+xy-y2-x+2y-1
b) 3x2-2xy-y2-10x-2y+3
c) 3x2y-xy2+xy-2y2-3x-9y+5
d) 2x2y2-3xy-2y2+y+1
e) 3x3-12xy2-5x2-4y2+x+1
a)2x^2+xy-y^2-x+2y-1
=2x^2+xy-x-(y-1)^2
=2x^2+x(y-1)-(y-1)^2
=2a^2+ab-b^2 với a=x,b=y-1
=2a^2+2ab-ab-b^2
=(2a-b)(a+b)
=(2x-y+1)(x+y-1)
tìm đa thức A biết
2A+(2x2+y2)=6x2=5y2-2x2y2
2A-(xy + 3x2 -2y2 ) = x2 -8y+xy
A+(3x2y - 2xy2 ) = 2x2y = 4xy3
a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)
=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)
=>\(2A=4x^2+4y^2-2x^2y^2\)
=>\(A=2x^2+2y^2-x^2y^2\)
b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)
=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)
=>\(2A=4x^2+2xy-8y-2y^2\)
=>\(A=2x^2+xy-4y-y^2\)
c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)
=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)
=>\(A=-x^2y+4xy^3+2xy^2\)
Bài 1: Làm tính nhân:
a. 3x2(5x2- 4x +3) b. – 5xy(3x2y – 5xy +y2)
c. (5x2- 4x)(x -3) d. (x – 3y)(3x2 + y2 +5xy)
a, \(15^4-12x^3+9x^2\)
b,\(-15x^3y^2+25x^2y^2-5xy^3\)
c, \(5x^3-19x^2+12x\)
d,
x3+xy2+5x2y−9x2y−3y3−15xy2=3x3−3y3−14xy2−4x2y
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-15x^2-4x^2+12x=5x^3-19x^2+12x\\ d,=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2=3x^3-14xy^2-4x^2y-3y^3\)