Những câu hỏi liên quan
DE
Xem chi tiết
AH
18 tháng 1 2021 lúc 15:16

Lời giải:Do ƯCLN $(a,b)=7$ nên đặt $a=7x; b=7y$ trong đó $x,y$ là các số tự nhiên thỏa mãn ƯCLN $(x,y)=1$

Khi đó:

$ab=294$

$7x.7y=294$

$xy=6$

Vì $a< b$ nên $x< y$. Do đó từ $xy=6$ ta có $(x,y)=(1,6); (2,3)$

$\Rightarrow (a,b)=(7,42); (14, 21)$

 

Bình luận (0)
NT
Xem chi tiết
NV
9 tháng 10 2016 lúc 10:08

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

  \(\frac{12a-15b}{7}\)  = \(\frac{20c-12a}{9}\)  = \(\frac{15b-20c}{11}\) = \(\frac{12a-15b+20c-12a+15b-20b}{7+9+11}\) = \(\frac{0}{27}\) = 0

=> a = b = c

Mà a + b + c = 48

=> a = b = c = 48 : 3 = 16

Vậy a = b = c = 16.

Bình luận (0)
MN
Xem chi tiết
H24
30 tháng 12 2021 lúc 1:52

Tham khảo

Bình luận (0)
DV
Xem chi tiết
HM
Xem chi tiết
H24
30 tháng 11 2018 lúc 22:35

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=0\)

\(\frac{12a-15b}{7}=0\Rightarrow12a=15b\Rightarrow\frac{a}{15}=\frac{b}{12}\Rightarrow\frac{a}{5}=\frac{b}{4}\)(1)

\(\frac{20c-12a}{9}=0\Rightarrow20c=15a\Rightarrow\frac{a}{20}=\frac{c}{12}\Rightarrow\frac{a}{5}=\frac{c}{3}\)(2)

\(\frac{15b-20c}{11}=0\Rightarrow15b=20c\Rightarrow\frac{b}{20}=\frac{c}{15}\Rightarrow\frac{b}{4}=\frac{c}{3}\)(3)

từ (1),(2),(3) => \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{5+4+3}=\frac{48}{12}=4\)(t/c dãy tỉ số bằng nhau)

\(\frac{a}{5}=4\Rightarrow a=20,\frac{b}{4}=4\Rightarrow b=16,\frac{c}{3}=4\Rightarrow c=12\)

Vậy a=20, b=16, c=12

Bình luận (0)
NT
6 tháng 3 2020 lúc 11:12

Áp dụng tc của dãy tỉ số bằng nhau :

\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=\frac{0}{27}=0\)

\(=>\hept{\begin{cases}12a-15b=0=>12a=15b=>\frac{a}{5}=\frac{b}{4}\\20c-12a=0=>20c=12a=>\frac{c}{3}=\frac{a}{5}\\15b-20c=0=>15b=20c=>\frac{c}{3}=\frac{b}{4}\end{cases}=>\frac{a}{5}=\frac{b}{4}=\frac{c}{3}}\)

Đặt \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=k=>\hept{\begin{cases}a=5k\\b=4k\\c=3k\end{cases}}\)

Thay vào : \(a+b+c=5k+4k+3k=12k=48=>k=4\)

\(=>\hept{\begin{cases}a=5k=5.4=20\\b=4k=4.4=16\\c=3k=3.4=12\end{cases}}\)

Vậy...

Bình luận (0)
 Khách vãng lai đã xóa
TY
Xem chi tiết
TT
17 tháng 9 2016 lúc 19:48

12a - 7b = 45

==> a = 9 

==> b = 9

Bình luận (0)
TT
17 tháng 9 2016 lúc 19:48

có thể là -9 nữa nhá

 

Bình luận (0)
HM
Xem chi tiết
PQ
14 tháng 7 2019 lúc 14:23

mk ko bt viết sigma trên đây :'< bn thông cảm

Đặt \(A=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)

\(=\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{a+c+d}+\frac{a+b+c+d}{a+b+d}+\frac{a+b+c+d}{a+b+c}-4\)

\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)

\(\ge\frac{16\left(a+b+c+d\right)}{3\left(a+b+c+d\right)}-4=\frac{16}{3}-4=\frac{4}{3}\)

Đặt \(B=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d}\)

\(=\frac{a+b+c+d}{a}+\frac{a+b+c+d}{b}+\frac{a+b+c+d}{c}+\frac{a+b+c+d}{d}-4\)

\(=\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)-4\ge\frac{16\left(a+b+c+d\right)}{a+b+c+d}-4=12\)

\(\Rightarrow\)\(S=A+B\ge\frac{4}{3}+12=\frac{40}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)

Bình luận (0)
PV
Xem chi tiết
NT
Xem chi tiết
PT
19 tháng 9 2016 lúc 22:57

\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=0\)(tử bằng 0)

=> 12a - 15b = 20c - 12a = 15b - 20c => 12a = 15b = 20c

=>\(\frac{12a}{60}=\frac{15b}{60}=\frac{20c}{60}=\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{5+4+3}=\frac{48}{12}=4\)=> a = 4.5 = 20 ; b = 4.4 = 16 ; c = 4.3 = 12

Bình luận (0)
CM
Xem chi tiết
H9
28 tháng 7 2023 lúc 10:02

a) Ta có:

\(A+B\)

\(=3x^2-9xy+y^2-7-y^2-3x+12\)

\(=3x^2-9xy+5-3x\)

b) Ta có:

\(A-B\)

\(=\left(3x^2-9xy+y^2-7\right)-\left(-y^2-3x+12\right)\)

\(=3x^2-9xy+y^2-7+y^2+3x-12\)

\(=3x^2-9xy+2y^2+3x-19\)

Bình luận (0)
KL
28 tháng 7 2023 lúc 10:05

a) \(a+b=\left(3x^2-9xy+y^2\right)+\left(-y^2-3x+12\right)\)

\(=3x^2-9xy+y^2-y^2-3x+12\)

\(=3x^2-9xy+\left(y^2-y^2\right)-3x+12\)

\(=3x^2-9xy-3x+12\)

b) \(a-b=\left(3x^2-9xy+y^2\right)-\left(-y^2-3x+12\right)\)

\(=3x^2-9xy+y^2+y^2+3x-12\)

\(=3x^2-9xy+\left(y^2+y^2\right)+3x-12\)

\(=3x^2-9xy+2y^2+3x-12\)

Bình luận (0)