tìm a,b Σ Z biết
a.b=12
a+b=-7
tìm a,b ϵN (a<b)biết
a.b=294:ƯCLN(a;b)=7
Lời giải:Do ƯCLN $(a,b)=7$ nên đặt $a=7x; b=7y$ trong đó $x,y$ là các số tự nhiên thỏa mãn ƯCLN $(x,y)=1$
Khi đó:
$ab=294$
$7x.7y=294$
$xy=6$
Vì $a< b$ nên $x< y$. Do đó từ $xy=6$ ta có $(x,y)=(1,6); (2,3)$
$\Rightarrow (a,b)=(7,42); (14, 21)$
Tìm a; b; c biết 12a-15b /7=20c-12a/9=15b-20c /11 và a+b+c=48
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{12a-15b}{7}\) = \(\frac{20c-12a}{9}\) = \(\frac{15b-20c}{11}\) = \(\frac{12a-15b+20c-12a+15b-20b}{7+9+11}\) = \(\frac{0}{27}\) = 0
=> a = b = c
Mà a + b + c = 48
=> a = b = c = 48 : 3 = 16
Vậy a = b = c = 16.
Tìm a,b,c biết:
\(\dfrac{12a-15b}{7}=\dfrac{20c-12a}{9}=\dfrac{15b-20c}{11}\) và a +b + c = 48
Tìm a; b; c biết 12a-15b /7=20c-12a/9=15b-20c /11 và a+b+c=48
tìm a,b,c biết
a+b+c=48 và \(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=0\)
\(\frac{12a-15b}{7}=0\Rightarrow12a=15b\Rightarrow\frac{a}{15}=\frac{b}{12}\Rightarrow\frac{a}{5}=\frac{b}{4}\)(1)
\(\frac{20c-12a}{9}=0\Rightarrow20c=15a\Rightarrow\frac{a}{20}=\frac{c}{12}\Rightarrow\frac{a}{5}=\frac{c}{3}\)(2)
\(\frac{15b-20c}{11}=0\Rightarrow15b=20c\Rightarrow\frac{b}{20}=\frac{c}{15}\Rightarrow\frac{b}{4}=\frac{c}{3}\)(3)
từ (1),(2),(3) => \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{5+4+3}=\frac{48}{12}=4\)(t/c dãy tỉ số bằng nhau)
\(\frac{a}{5}=4\Rightarrow a=20,\frac{b}{4}=4\Rightarrow b=16,\frac{c}{3}=4\Rightarrow c=12\)
Vậy a=20, b=16, c=12
Áp dụng tc của dãy tỉ số bằng nhau :
\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=\frac{0}{27}=0\)
\(=>\hept{\begin{cases}12a-15b=0=>12a=15b=>\frac{a}{5}=\frac{b}{4}\\20c-12a=0=>20c=12a=>\frac{c}{3}=\frac{a}{5}\\15b-20c=0=>15b=20c=>\frac{c}{3}=\frac{b}{4}\end{cases}=>\frac{a}{5}=\frac{b}{4}=\frac{c}{3}}\)
Đặt \(\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=k=>\hept{\begin{cases}a=5k\\b=4k\\c=3k\end{cases}}\)
Thay vào : \(a+b+c=5k+4k+3k=12k=48=>k=4\)
\(=>\hept{\begin{cases}a=5k=5.4=20\\b=4k=4.4=16\\c=3k=3.4=12\end{cases}}\)
Vậy...
Tìm a , b thuộc Z biết :
12a - 7b = 45
giải giùm nhé
12a - 7b = 45
==> a = 9
==> b = 9
Cho a, b, c, d > 0. Tìm Min của:
\(S=\text{Σ}\frac{a}{b+c+d}+\text{Σ}\frac{b+c+d}{a}\)
mk ko bt viết sigma trên đây :'< bn thông cảm
Đặt \(A=\frac{a}{b+c+d}+\frac{b}{a+c+d}+\frac{c}{a+b+d}+\frac{d}{a+b+c}\)
\(=\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{a+c+d}+\frac{a+b+c+d}{a+b+d}+\frac{a+b+c+d}{a+b+c}-4\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{a+c+d}+\frac{1}{a+b+d}+\frac{1}{a+b+c}\right)-4\)
\(\ge\frac{16\left(a+b+c+d\right)}{3\left(a+b+c+d\right)}-4=\frac{16}{3}-4=\frac{4}{3}\)
Đặt \(B=\frac{b+c+d}{a}+\frac{a+c+d}{b}+\frac{a+b+d}{c}+\frac{a+b+c}{d}\)
\(=\frac{a+b+c+d}{a}+\frac{a+b+c+d}{b}+\frac{a+b+c+d}{c}+\frac{a+b+c+d}{d}-4\)
\(=\left(a+b+c+d\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)-4\ge\frac{16\left(a+b+c+d\right)}{a+b+c+d}-4=12\)
\(\Rightarrow\)\(S=A+B\ge\frac{4}{3}+12=\frac{40}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=d\)
C1: tìm x,y,z thuộc N sao cho x^3+y^3=2Z^3 và x+y+z là SNT
C2: Tìm a thuộc N sao cho a+1,4a^+8a+5, 6a^2+12a+7 là SNT
12a-15b/7=20c-12a/9=15b-20c/11 và a+b+c=48
\(\frac{12a-15b}{7}=\frac{20c-12a}{9}=\frac{15b-20c}{11}=\frac{12a-15b+20c-12a+15b-20c}{7+9+11}=0\)(tử bằng 0)
=> 12a - 15b = 20c - 12a = 15b - 20c => 12a = 15b = 20c
=>\(\frac{12a}{60}=\frac{15b}{60}=\frac{20c}{60}=\frac{a}{5}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{5+4+3}=\frac{48}{12}=4\)=> a = 4.5 = 20 ; b = 4.4 = 16 ; c = 4.3 = 12
a= 3x2 - 9xy + y2 -7 b= -y2 - 3x +12
a) tính a+b
b) tính a-b
a) Ta có:
\(A+B\)
\(=3x^2-9xy+y^2-7-y^2-3x+12\)
\(=3x^2-9xy+5-3x\)
b) Ta có:
\(A-B\)
\(=\left(3x^2-9xy+y^2-7\right)-\left(-y^2-3x+12\right)\)
\(=3x^2-9xy+y^2-7+y^2+3x-12\)
\(=3x^2-9xy+2y^2+3x-19\)
a) \(a+b=\left(3x^2-9xy+y^2\right)+\left(-y^2-3x+12\right)\)
\(=3x^2-9xy+y^2-y^2-3x+12\)
\(=3x^2-9xy+\left(y^2-y^2\right)-3x+12\)
\(=3x^2-9xy-3x+12\)
b) \(a-b=\left(3x^2-9xy+y^2\right)-\left(-y^2-3x+12\right)\)
\(=3x^2-9xy+y^2+y^2+3x-12\)
\(=3x^2-9xy+\left(y^2+y^2\right)+3x-12\)
\(=3x^2-9xy+2y^2+3x-12\)