Những câu hỏi liên quan
DH
Xem chi tiết
PQ
27 tháng 3 2018 lúc 17:59

\(a)\) Ta có : 

\(M=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\)

Thay \(a+b=1\) vào \(M=\left(a+b\right)\left(a^2+b^2-ab\right)\) ta được : 

\(M=\left(a+b\right)\left(a^2+b^2-ab\right)=1\left(a^2+b^2-ab\right)=a^2+b^2-ab\)

Lại có : 

\(a^2\ge0\)

\(b^2\ge0\)

\(\Rightarrow\)\(a^2+b^2\ge0\)

\(\Rightarrow\)\(a^2+b^2-ab\ge-ab\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a^2=0\\b^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)

Vậy \(M_{min}=-ab\) khi \(a=b=0\)

Sai thì thôi nhé, mk mới lớp 7 

Bình luận (0)
PK
27 tháng 3 2018 lúc 17:59

dytt me dễ vãi lone

\(a^3+\frac{1}{8}+\frac{1}{8}\ge3\sqrt[3]{\frac{a^3.1}{8.8}}=\frac{3}{4}a.\)

\(b^3+\frac{1}{8}+\frac{1}{8}\ge\frac{3}{4}b\)

\(M+\frac{4}{8}\ge\frac{3}{4}\left(a+b\right)=\frac{3}{4}\Leftrightarrow M\ge\frac{3}{4}-\frac{4}{8}=?\) tự tính dcmmm

b.

\(a^3+1+1\ge3\sqrt[3]{a^3}=3a\)

\(b^3+1+1\ge3b\)

\(a^3+b^3+4\ge3\left(A+b\right)\)

cái dmcmmm a^3+b^3=2 suy ra

\(6\ge3\left(a+b\right)\)

\(2\ge a+b\)

dytt cụ m tự kết luận

Bình luận (1)
NL
Xem chi tiết
NL
Xem chi tiết
NL
30 tháng 7 2021 lúc 7:57

Các bn giúp mk nhanh nhanh nha câu b thôi câu a mk bt rồi nếu ko hiểu bảo mk gửi lại cho

Bình luận (0)
TD
Xem chi tiết
TN
11 tháng 1 2017 lúc 20:42

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Bình luận (0)
TN
11 tháng 1 2017 lúc 21:12

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks

Bình luận (0)
NH
17 tháng 1 2018 lúc 21:07

Thắng Nguyễn làm đúng rồi đấy các bn, tham khảo nha

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
BH
4 tháng 11 2021 lúc 22:02

lỗi r bn ơi

Bình luận (0)
NT
4 tháng 11 2021 lúc 22:04

Bạn ghi lại đề đi bạn

Bình luận (0)
06
Xem chi tiết
BT
25 tháng 11 2021 lúc 12:53

Để B nhỏ nhất nên | x + 11| = 0 và | 1 -y | = 0

Với | x + 11 | = 0 thì  x + 11 = 0 nên x = -11

Với | y - 1 | = 0 thì y - 1 = 0 nên y =1

Vậy x = -11 , y =1

 

hok tốt 

Bình luận (2)
VT
Xem chi tiết
LF
1 tháng 1 2017 lúc 5:57

có cho x dương ko để xài Cosi

Bình luận (12)
HN
11 tháng 3 2017 lúc 11:44

Đề không cho gì hết nên ta xét 2 trường hợp.

Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.

Trường hợp 2: \(x\ge0\) thì ta thấy \(x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.

Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN

Bình luận (0)
HN
11 tháng 3 2017 lúc 11:45

Đề không cho gì hết nên ta xét 2 trường hợp.

Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.

Trường hợp 2: \(x\ge0\) thì ta thấy \(3>x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.

Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN

Bình luận (0)
NN
Xem chi tiết
NT
6 tháng 4 2023 lúc 13:32

2:

|x+4|>=0

=>-|x+4|<=0

=>B<=11

Dấu = xảy ra khi x=-4

Bình luận (0)
TN
Xem chi tiết