Những câu hỏi liên quan
LP
Xem chi tiết
E3
Xem chi tiết
BG
8 tháng 5 2021 lúc 16:45

fan bé sans à

Bình luận (0)
H24
8 tháng 5 2021 lúc 16:47

wuttttt

Bình luận (0)
DD
8 tháng 5 2021 lúc 16:49

undefined

Bình luận (3)
TH
Xem chi tiết
H24
Xem chi tiết
NH
15 tháng 8 2023 lúc 17:31

https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881

Cô làm rồi em nhá

Bình luận (0)
H24
Xem chi tiết
NH
15 tháng 8 2023 lúc 17:30

Câu a, xem lại đề bài

Câu b: 

    P =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)

   Vì  \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\)                =  \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)

         \(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\)                = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)

         \(\dfrac{1}{4^2}\)  < \(\dfrac{1}{3.4}\)               = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) 

     ........................

        \(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)

Cộng vế với vế ta có:  

0< P < 1 - \(\dfrac{1}{2023}\) < 1

Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp

 

Bình luận (0)
NH
15 tháng 8 2023 lúc 17:30

Câu c:  

C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C 

B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0 

Cộng vế với vế ta có: 

C+B =  \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)\(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0

             Mặt khác ta có: 

1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)

Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)

 

 

Bình luận (0)
LM
Xem chi tiết
PH
30 tháng 1 2023 lúc 9:59

3x-1 - 2 = 32 + [52 - 3(22 - 1)]

3x-1-2=9+[25-3(4-1)]

3x-1-2=9+(25-3.3)

3x-1-2=9+(25-9)

3x-1-2=9+16

3x-1-2=25

3x-1=25+2

3x-1=27

3x-1=33

=>x-1=3

x=3+1

x=4

2x-1 + 3 = 52

2x-1+3=25

2x-1=25-3

2x-1=22

 

Bình luận (0)
KM
Xem chi tiết
H24
Xem chi tiết
H24
28 tháng 4 2022 lúc 13:58

Đặt B=122+132+...+182B=122+132+...+182A=11⋅2+12⋅3+...+17⋅8A=11⋅2+12⋅3+...+17⋅8

=1−18<1(2)=1−18<1(2)

Từ (1);(2)(1);(2) ta có: B<A<1⇒B<1

Bình luận (0)
HN
Xem chi tiết
KR
6 tháng 10 2023 lúc 13:43

`#3107.101107`

Gọi biểu thức trên là A

Ta có:

\(A=1+5^2+5^4+...+5^{40}\\ =1\cdot\left(1+5^2\right)+5^4\cdot\left(1+5^2\right)+...+5^{38}\cdot\left(1+5^2\right)\\ =\left(1+5^2\right)\cdot\left(1+5^4+...+5^{38}\right)\\ =26\cdot\left(1+5^4+...+5^{38}\right)\)

Vì \(26\cdot\left(1+5^4+...+5^{38}\right)\text{ }⋮\text{ }26\)

\(\Rightarrow A\text{ }⋮\text{ }26\)

_______

Gọi biểu thức trên là B

Ta có:

\(B=1+2^2+2^4+...+2^{100}\\ =1\cdot\left(1+2^2+2^4\right)+2^6\cdot\left(1+2^2+2^4\right)+...+2^{96}\cdot\left(1+2^2+2^4\right)\\ =\left(1+2^2+2^4\right)\cdot\left(1+2^6+...+2^{96}\right)\\ =21\cdot\left(1+2^6+...+2^{96}\right)\)

Vì \(21\cdot\left(1+2^6+...+2^{96}\right)\text{ }⋮\text{ }21\)

\(\Rightarrow B\text{ }⋮\text{ }21\)

_______

Gọi biểu thức trên là C

Ta có:

\(C=1+3^2+3^4+...+3^{100}\\ =1\cdot\left(1+3^2+3^4+3^6\right)+3^6\cdot\left(1+3^2+3^4+3^6\right)+...+3^{94}\cdot\left(1+3^2+3^4+3^6\right)\\ =\left(1+3^2+3^4+3^6\right)\cdot\left(1+3^6+...+3^{94}\right)\\ =820\cdot\left(1+3^6+...+3^{94}\right)\)

Vì \(820\cdot\left(1+3^6+...+3^{94}\right)\text{ }⋮\text{ }82\)

\(\Rightarrow C\text{ }⋮\text{ }82.\)

Bình luận (0)
NT
6 tháng 10 2023 lúc 13:49

a) \(A=1+5^2+5^4+5^6...+5^{40}\)

\(\Rightarrow A=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{38}\left(1+5^2\right)\)

\(\Rightarrow A=26+5^4.26+...+5^{38}.26\)

\(\Rightarrow A=26\left(1+5^4+...+5^{38}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+5^6...+5^{40}⋮6\left(dpcm\right)\)

b) \(B=1+2^2+2^4+2^6+...+2^{100}\)

\(\Rightarrow B=\left(1+2^2+2^4\right)+2^6\left(1+2^2+2^4\right)+...+2^{96}\left(1+2^2+2^4\right)\)

\(\Rightarrow B=21+2^6.21+...+2^{96}.21\)

\(\Rightarrow B=21\left(1+2^6+...+2^{96}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+2^6+...+2^{100}⋮21\left(dpcm\right)\)

Bài C tương tự bạn tự làm nhé!

Bình luận (0)
TH
Xem chi tiết
OY
13 tháng 8 2021 lúc 15:06

Ta có: \(\dfrac{1}{5^2}>\dfrac{1}{5.6};\dfrac{1}{6^2}>\dfrac{1}{6.7};...;\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{100.101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{1}{5}-\dfrac{1}{101}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}>\dfrac{96}{505}>\dfrac{1}{6}\) (1)

Ta có: \(\dfrac{1}{5^2}< \dfrac{1}{4.5};\dfrac{1}{6^2}< \dfrac{1}{5.6};\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\) (2)

Từ (1) và (2)⇒\(\dfrac{1}{6}< B< \dfrac{1}{4}\)

 

 

Bình luận (0)