A=1+1/2x(1+2)+1/3x(1+2+3)+...+1/2022+(1+2+3+...+2022)
Tìm x, biết: a) 121-(115+x)= 3x-(25-9-5x)-8
b)2x+2.3x+1.5x = 10800
c) (3|x-1/2) . (8/15-1/5)+2/3-1
d) x+1/2022 + x+2/2021= x+3/2020 + x+4/2019
\(a,121-\left(115+x\right)=3x-\left(25-9-5x\right)-8\\ 121-115-x=3x-25+9+5x-8\\ 6-x=8x-24\\ 8x+x=-24-6\\ 9x=-30\\ x=-\dfrac{30}{9}=-\dfrac{10}{3}\\ ----\\ b,2^{x+2}.3^{x+1}.5^x=10800\\ \left(2.3.5\right)^x.2^2.3=10800\\ 30^x.12=10800\\ 30^x=\dfrac{10800}{12}=900=30^2\\ Vậy:x=2\)
so sánh b=1/2022+2/2021+3/2020+...+2021/2+2022/1 VÀ c=1/2+1/3+1/4+...+1/2022+1/2023
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
B=1+1/2.(1+2)+1/3.(1+2+3)+...+1/2022.(1+2+3+...+2022)
-Ta có công thức với n∈N* thì:\(1+2+...+n=\dfrac{\left(\dfrac{n-1}{1}+1\right)\left(n+1\right)}{2}=\dfrac{n\left(n+1\right)}{2}\)
\(B=1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+...+\dfrac{1}{2022}.\left(1+2+3+...+2022\right)\)
\(=1+\dfrac{1}{2}.\dfrac{2.3}{2}+\dfrac{1}{3}.\dfrac{3.4}{2}+...+\dfrac{1}{2022}.\dfrac{2022.2023}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2023}{2}\)
\(=\dfrac{2+3+4+...+2023}{2}=\dfrac{1+2+3+4+...+2022}{2}=\dfrac{\dfrac{2022.2023}{2}}{2}=10222626,5\)
A=1-\(\dfrac{1}{2^2}\)-\(\dfrac{1}{3^2}\)-...-\(\dfrac{1}{2022^2}\) Chứng minh A>\(\dfrac{1}{2022}\)
A=1-(1/2^2+1/3^2+...+1/2022^2)
1/2^2+1/3^2+...+1/2022^2<1/1*2+1/2*3+...+1/2021*2022=1-1/2022=2021/2022
=>-(1/2^2+...+1/2022^2)>-2021/2022
=>A>1/2022
Cho 2022 số tự nhiên khác 0 a(1), a(2), a(3), a(4),..., a(2021), a(2022) thỏa mãn:
1/a(1) + 1/a(2) + 1/a(3) + ... + 1/a(2021) + 1/a(2022) = 1. Chứng minh rằng tồn tại ít nhất một số trong 2022 số đã cho là số chẵn
Giả sử tất cả các số đã cho đều lẻ
=>Quy đồng, ta được:
\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)
Tử có 2022 số hạng, mẫu là số lẻ
=>A là số chẵn khác 1
=>Trái GT
=>Phải có ít nhất 1 số là số chẵn
cho A=1+2022+2022^2+2022^3 +2022^4+...+2022^2016 + 2022^2017
và B= 2022^2018-1 . so sánh A và B
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
2023-1/2*(1+2)-1/3*(1+2+3)-1/4*(1+2+3+4)-...-1/2022*(1+2+3+4+...+2022)
1, A=2022-(2x-\(3^2\))
Yêu cầu đề bài là gì vậy bạn?
cho hai đa thứ a= x-3x^3+1+4x^2 và b= x-x^3-2022-2x^3 - 2x^2
tính c=a-b. chứng tỏ c luôn dương với mọi xC = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
C = A - B
= (x - 3x³ + 1 + 4x²) - (x - x³ - 2022 - 2x³ - 2x²)
= x - 3x³ + 1 + 4x² - x + x³ + 2022 + 2x³ + 2x²
= (-3x³ + x³ + 2x³) + (4x² + 2x²) + (1 + 2022)
= 6x² + 2023
Do x² ≥ 0 với mọi x
⇒ 6x² ≥ 0 với mọi x
⇒ 6x² + 2023 > 0 với mọi x
Vậy C luôn dương với mọi x
x+1/2021*2022+1/2021*2022+......+1/3*2+1/3*2=1