Tìm X thuộc N biết
7X+8X+9X+10X+............+201X-280=20000
Tìm X thuộc N biết 7x+8x+9x+10x+.....+201x-280 =20000
7x + 8x + 9x + 10x +.....+ 201x - 280 = 20000
=> (7+8+9+10+....+201)x = 20280
=> 20280x = 20280
=> x = 20280 : 20280
=> x = 1
\(\frac{x}{x^2+9x+2019}=\frac{x^2+10x+2019}{x^2+8x+2019}\)
Ta thấy \(0\)không thỏa mãn phương trình trên.
Với \(x\ne0\)phương trình tương đương với:
\(\frac{1}{x+9+\frac{2019}{x}}=\frac{x+10+\frac{2019}{x}}{x+8+\frac{2019}{x}}\)
\(\Leftrightarrow\frac{1}{t+9}=\frac{t+10}{t+8}\)(\(t=x+\frac{2019}{x}\))
\(\Rightarrow\left(t+10\right)\left(t+9\right)=t+8\)
\(\Leftrightarrow t^2+18t+82=0\)
\(\Leftrightarrow\left(t+9\right)^2+1=0\)(vô nghiệm)
Vậy phương trình đã cho vô nghiệm.
x+2x+3x+3x+4x+5x+6x+7x+8x+9x+10x=-165.tim x
X*(1+2+3+4+5+6+7+8+9+10)=-165
X*55=-165
X=-165/55=-3
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
(1x + 9x) + (2x + 8x) + (3x + 7x) + (4x + 6x) + 5x + 10x = -165
10x^6 + 5x = -165
= 65x (-165)
= -100
x.1x.2x.3x.4x.5x.6x.7x.8x.9x.10x.11x=5500
x=?
1, x^4 +5x^3 +10x^2+ +15x+9=0
2. X^4 - 4x^3 - 9x^2 + 8x +4=0
2: Ta có: \(x^4-4x^3-9x^2+8x+4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-12x^2+12x-4x+4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-12x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-12x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-5x^2-10x-2x-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-5x\left(x+2\right)-2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x^2-5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{5-\sqrt{33}}{2}\\x=\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-2;\dfrac{5-\sqrt{33}}{2};\dfrac{5+\sqrt{33}}{2}\right\}\)
1: Ta có: \(x^4+5x^3+10x^2+15x+9=0\)
\(\Leftrightarrow x^4+x^3+4x^3+4x^2+6x^2+6x+9x+9=0\)
\(\Leftrightarrow x^3\left(x+1\right)+4x^2\left(x+1\right)+6x\left(x+1\right)+9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+4x^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^3+3x^2+x^2+6x+9\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x+3\right)+\left(x+3\right)^2\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\left(x^2+x+3\right)=0\)
mà \(x^2+x+3>0\forall x\)
nên (x+1)(x+3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
Vậy: S={-1;-3}
M(x) = 9x^5 - x^3 +4x^2 +5x +9 - 9x^5 - 6x^2 - 2 +3x^4
N(x) = 10x^2 +5x^3 - 3x^4 - 3x^3 - 8x - x^3 +9x - 7
a) Thu gọn mỗi đa thức trên rồi sắp xếp chúng theo lũy thừa giảm dần của biến, tìm hệ số cao nhất, hệ số tự do của từng đa thức
b) Tính A(x) = M(x) + N(x) và B(x) = M(x) - N(x)
c) TÌm nghiệm của đa thức A(x)
a)\(M\left(x\right)=3x^4-x^3-2x^2+5x+7\)
\(N\left(x\right)=-3x^4+x^3+10x^2+x-7\)
b)\(A\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=>A\left(x\right)=3x^4-x^3-2x^2+5x+7-3x^4+x^3+10x^2+x-7\)
\(A\left(x\right)=8x^2+6x\)
\(B\left(x\right)=3x^4-x^3-2x^2+5x+7+3x^4-x^3-10x^2-x+7\)
\(B\left(x\right)=6x^4-2x^3-12x^2+x+14\)
c)cho A(x) = 0
\(=>8x^2+6x=0=>x\left(8x+6\right)=0=>\left[{}\begin{matrix}x=0\\8x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{4}\end{matrix}\right.\)
\(8x^3-12x^2+10x-3=\left(9x+1\right)\sqrt{9x-1}\)
Tìm Min hoặc Max
a)2x^2+10x-1
b) 5x - x^2
c) 2x^2-8x-10
d)9x-3x^2
\(\frac{x}{x^2+9x+a}=\frac{x^2+10x+a}{x^2+8x+a}\) ( với a=const )