Những câu hỏi liên quan
H24
Xem chi tiết
H9
21 tháng 10 2023 lúc 11:46

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

Bình luận (0)
NA
Xem chi tiết
KI
3 tháng 10 2015 lúc 18:09

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Bình luận (0)
NP
12 tháng 10 2022 lúc 20:40

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Bình luận (0)
H24
Xem chi tiết
H9
1 tháng 10 2023 lúc 7:57

a) \(C=5+5^2+5^3+...+5^8\)

\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)

\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)

\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)

Vậy C chia hết cho 30

b) \(D=2+2^2+2^3+...+2^{60}\)

\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)

\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)

Vậy D chia hết cho 3

\(D=2+2^2+2^3+...+2^{60}\)

\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)

\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)

\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)

Vậy D chia hết cho 7

\(D=2+2^2+2^3+...+2^{60}\)

\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)

\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)

\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)

Vậy D chia hết cho 15 

Bình luận (0)
KL
1 tháng 10 2023 lúc 8:10

a) C = 5 + 5² + 5³ + ... + 5⁸

= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)

= 30 + 5².30 + 5⁴.30 + 5⁶.30

= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30

Vậy C ⋮ 30

b) *) Chứng minh D ⋮ 3

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy D ⋮ 3   (1)

*) Chứng minh D ⋮ 7

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy D ⋮ 7   (2)

*) Chứng minh D ⋮ 15

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)

= 2.15 + 2⁵.15 + ... + 2⁵⁷.15

= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15

Vậy D ⋮ 15   (3)

Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15

Bình luận (0)
P4
Xem chi tiết
HD
28 tháng 4 2015 lúc 7:14

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

Bình luận (0)
H24
25 tháng 6 2015 lúc 15:08

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

Bình luận (0)
NT
15 tháng 10 2015 lúc 21:23

cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào

 

Bình luận (0)
NT
Xem chi tiết
TA
Xem chi tiết
TH
1 tháng 10 2017 lúc 14:41

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

Bình luận (0)
NU
Xem chi tiết
EF
15 tháng 12 2017 lúc 16:45

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
Bình luận (0)
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Bình luận (0)
DT
22 tháng 2 2024 lúc 20:01

Đcm

 

Bình luận (0)
LW
Xem chi tiết
TA
14 tháng 10 2017 lúc 18:37

cho a+b+c=0 cmr

a^3 + b^3+a^2c+b^2c-abc=0

Bình luận (0)
NN
5 tháng 1 2018 lúc 21:47

A=2+22+23+...+260

A=(2+22+23)+...+(258+259+260)

A=12.1+...+257.(2+22+23)

A=12.1+...+257.12

A=12.(1+...+257)chia hết cho  3 vì 12 chia hết cho 3

tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm

Bình luận (0)
HM
Xem chi tiết
KT
Xem chi tiết
PP
19 tháng 12 2015 lúc 17:23

a)A=2+2^2+2^3+...+2^60 chia hết cho 15

=>(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=>2.(1+2+2^2+2^3)+...+2^57+(1+2+2^2+2^3)

=>2.15+...+2^57.15

Vì 15 chia hết choo 15

=>a chia hết cho 15

b)B=1+5+5^2+5^3+...+5^56+5^59+5^98 chia hết cho 31

=>(1+5+5^2)+...+5^56.(1+5+5^2)

=>31+....+5^56.3vi2 31 chia hết cho 31

=>B chia hết cho 31

 

Bình luận (0)
CN
19 tháng 12 2015 lúc 17:18

Ta có : 
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3) 
A=(2+2^5+...+2^57)*15 chia het cho 15 

Bình luận (0)
DH
19 tháng 12 2015 lúc 17:20

Ai tick mình đi cho tròn 20 điểm

Bình luận (0)