Tìm các số nguyên tố p, q sao cho tồn tại số tự nhiên n thoả mãn điều kiện: $pq(n+1)=(p+q)(n^2+1)$
tìm một số nguyên tố p và q sao cho tồn tại số nguyên dương n thỏa mãn điều kiện: 1/p-1/q=9/n
giúp mik với ạ , mik cần gấp
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
tìm tất cả các số nguyên tố p,q sao cho tồn tại số tự nhiên m thỏa mãn: \(\frac{pq}{p+q}=\frac{m^2+1}{m+1}\)
a) Chứng minh 10n+18n -1 chia hết cho 27 với n là số tự nhiên
b) Tìm số tự nhiên nhỏ nhất sao cho khi chia cho 11 dư 6 cho 4 dư 1 cho 19 dư 11
c) Cho p,q là các số nguyên tố lớn hơn 3 thoả mãn điều kiện p=q+2. Tìm số dư khi chia (p+q)cho 12
d) Cho P=3n+2/2n-1 trong đó n là số tự nhiên. Tìm n để P có giá trị lớn nhất
e) Tìm số tự nhiên n nhỏ nhất để các phân số sau tối giản :
7/n+9;8/n+10;9/n+11;.........;31/n+33
Đặt A=102+18n-1
=10n-1+18n
=9999...9(n c/số 9)+18n
=9.11111...1(n c/số 1)+9.2n
=9(1111...1(n c/số 1+2n)
mà 111...1(n c/số 1)=n+9q
=>A=9.(9q+n+2n)
=>A=9(9q+3n)
=9.3.(3q+n)
=27(3q+n)
=>\(A⋮27\)
vậy...(đccm)
mấy bài sau dễ òi
bn tự làm nhé
Nếu dễ thì bạn làm nốt đi. Mà bạn học lớp nào và ở đâu?
1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố
2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố
3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương
4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p
5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab +c ( a + b )
Chứng minh: 8c + 1 là số cp
6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3
Chứng minh: 9x – 1 là lập phương đúng
7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c
8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1
Chứng minh: ( x + y )^2 + ( xy – 1 )^2 không phải là số cp
9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2
10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương
11, Cho các số nguyên n thuộc Z, CM:
A = n^5 - 5n^3 + 4n \(⋮\)30
B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ
C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42
tìm số nguyên tố p sao cho tồn tại số tự nhiên n để p=\(n^3-n^2+n-1\) p là
Trl :
Bạn kia làm đúng rồi nhé !
Học tốt nhé bạn @
tìm số nguyên tố p sao cho tồn tại số tự nhiên n để \(p=n^3-n^2+n-1\)
dễ mà
n^3-n^2+n-1
=n^2(n-1)+(n-1)=(n-1)(n^2+1)
do p là snt nên p chỉ có 2 ước là 1 và chính nó=>n-1=1=>n=2
=>p=1(2^2+1)=5
vậy p=5
\(p=\)\(5\)nha bạn
Chúc các bạn học giỏi
Nha
dễ mà
n^3-n^2+n-1
=n^2(n-1)+(n-1)=(n-1)(n^2+1)
do p là snt nên p chỉ có 2 ước là 1 và chính nó=>n-1=1=>n=2
=>p=1(2^2+1)=5
vậy p=5
:3
2. Tìm các số tự nhiên n thoả mãn n2 +3n+2 là số nguyên tố.
3. Tìm các số tự nhiên n sao cho 2n +34 là số chính phương.
4. Chứng minh rằng tổng S = 14 +24 +34 +···+1004 không là số chính phương.
5. Tìm các số nguyên dương a ≤ b ≤ c thoả mãn abc,a+b+c,a+b+c+2 đều là các số nguyên tố
Mik gấp
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
2: A=n^2+3n+2=(n+1)(n+2)
Để A là số nguyên tố thì n+1=1 hoặc n+2=2
=>n=0
Tìm tất cả số nguyên tố p, q sao cho tồn tại số tự nhiên m thỏa mãn:
\(\dfrac{pq}{p+q}=\dfrac{m^2+1}{m+1}\)
tìm số nguyên tố p sao cho tồn tại số tự nhiên n để p=n^3-n^2+n-1
p=