a, tìm đkxđ
b, rút gọn
Cho biểu thức A=\(\sqrt{x-\sqrt{x^2-4x+4}}\)
a) Tìm ĐKXĐ
b) Rút gọn A
\(a,DKXD:x\ge0\)
\(b,A=\sqrt{x-\sqrt{x^2-4x+4}}\)
\(=\sqrt{x-\sqrt{\left(x-2\right)^2}}\)
\(=\sqrt{x-\left|x-2\right|}\)
\(=\sqrt{x-\left(x-2\right)}\)
\(=\sqrt{x-x+2}\)
\(=\sqrt{2}\)
Cho biểu thức p=(3x-9)/(x²-3x) a) tìm ĐKXĐ của p b) rút gọn p
a: ĐKXĐ: x<>0; x<>3
b: \(P=\dfrac{3\left(x-3\right)}{x\left(x-3\right)}=\dfrac{3}{x}\)
1, Cho biểu thức:
A =( √x/√x-1 + 2 / x- √x) : 1/√x-1
a.Tìm ĐKXĐ,rút gọn A.
b,Tìm GTNN của A.
2, Cho biểu thức:
B=(1/√x-1 + 1/√x+1).(1+ 1/√x)
a,Tim ĐKXĐ,rút gọn A.
b,Tìm x để {eq \x\le\ri(A)} > A
Bài 3. Cho biểu thức: A=(√x/(√x+1)-√x/(√x-1)):2/(√x+1)
a) Tìm ĐKXĐ, Rút gọn A. b) Tìm x khi A=2
tìm đkxđ và rút gọn
ĐKXĐ: x<>0; x<>2; x<>1; x<>-1
\(Q=1+\dfrac{x+1+x+1-2x^2+2x-2}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\dfrac{x\left(x^2-x-1\right)}{x^2\left(x-2\right)}\)
\(=1+\dfrac{-2x^2+4x}{\left(x+1\right)}\cdot\dfrac{1}{x\left(x-2\right)}\)
\(=1+\dfrac{-2x\left(x-2\right)}{x\left(x+1\right)\left(x-2\right)}=1+\dfrac{-2}{x+1}=\dfrac{x+1-2}{x+1}=\dfrac{x-1}{x+1}\)
B=5/x+1-10/x-x^2-1-15/x^3-1 a)ĐKXĐ b) rút gọn c) cho x>0.TÌm max B
a: ĐKXĐ: \(x\ne-1\)
b: \(B=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{x^3-1}\)
\(=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{5x}{x^2-x+1}\)
tìm đkxđ và rút gọn B=x/x-4 -1/2-√x +1/√x+2
ĐKXĐ: x>=0; x<>4
\(B=\dfrac{x}{x-4}-\dfrac{1}{2-\sqrt{x}}+\dfrac{1}{\sqrt{x}+2}\)
\(=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
Cho P =(căn x)/(căn x-1)-(2 căn x)/(căn x+1)+(x-3)/(x-1) a) tìm ĐKXĐ b) rút gọn P
`a)->` ĐKXĐ : `x>=0;x\ne1`
`b)` Ta có :
`P=(\sqrtx)/(\sqrtx-1)-(2\sqrtx)/(\sqrtx+1)+(x-3)/(x-1)`
`P=(\sqrtx(\sqrtx+1)-2\sqrtx(\sqrtx-1)+x-3)/(x-1)`
`P=(x+\sqrtx-2x+2\sqrtx+x-3)/(x-1)`
`P=(3\sqrtx-3)/(x-1)`
`P=(3(\sqrtx-1))/((\sqrtx-1)(\sqrtx+1))`
`P=3/(\sqrtx+1)`
Vậy `P=3/(\sqrtx+1)` khi `x>=0;x\ne1`
\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{x-1}\\ =\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+\sqrt{x}-2x+2\sqrt{x}+x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\\)
\(=\dfrac{3}{\sqrt{x}+1}\)
Bổ sung \(\text{đ}k\text{x}\text{đ}:x\ge0;x\ne1\)
tìm đkxđ và rút gọn
Q= 3/√a- 3+ 2/√a+3 - a-5√a -3/9-a
ĐKXĐ: a>=0; a<>9
\(Q=\dfrac{3}{\sqrt{a}-3}+\dfrac{2}{\sqrt{a}+3}-\dfrac{a-5\sqrt{a}-3}{9-a}\)
\(=\dfrac{3\left(\sqrt{a}+3\right)+2\left(\sqrt{a}-3\right)+a-5\sqrt{a}-3}{a-9}\)
\(=\dfrac{3\sqrt{a}+9+2\sqrt{a}-6+a-5\sqrt{a}-3}{a-9}=\dfrac{a}{a-9}\)
Cho M=\(\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
a)Tìm ĐKXĐ
b)Rút gọn
c)Tìm x để M<0
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne2\end{matrix}\right.\)
\(M=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(M=\dfrac{-8\sqrt{x}}{x-4}\)
\(M< 0\Leftrightarrow-\dfrac{8\sqrt{x}}{x-4}< 0\Leftrightarrow x-4>0\Leftrightarrow x>4\)