( x + 3 ) mũ 2 + ( y + ) mũ 2
Bài 1: Rút gọn các biểu thức sau
a) (5x-y)(25x mũ 2 + 5xy + y mũ 2)
b) (x-3)(x mũ 2 + 3x + 9)-(54 + x mũ 3)
c) (2x+y)(4x mũ 2 - 2xy + y mũ 2) - (2x-y)(4x mũ 2 + 2xy + y mũ 2)
d) (x+y) mũ 2 + (x-y) mũ 2 + (x+y)(x-y) - 3x mũ 2
e) (x-3) mũ 3 - (x-3)(x mũ 2 + 3x + 9) +6(x+1) mũ 2
f) (x+y)(x mũ 2 - xy + y mũ 2) + (x-y)(x mũ 2 + xy + y mũ 2) - 2x mũ 3
g) x mũ 2 + 2x(y+1) + y mũ 2 + 2y + 1
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
cho các đơn thức sau 5x mũ 2 y mũ 3; 10 mũ 3 y mũ 2; x mũ 2 y mũ 3; -3x mũ 3 y mũ 2;1/2 x mũ 2 y mũ 3 ; -5x mũ 3 y mũ 2; x mũ 2 y mũ 3 tìm và nhóm các đơn thức đồng dạng rồi tính tổng các đơn thức đó
Nhóm 1: 5x^2y^3;x^2y^3;1/2x^2y^3;x^2y^3
Tổng là 6,5x^2y^3
Nhóm 2: 10x^3y^2;-3x^3y^2;-5x^3y^2
Tổng là 2x^3y^2
Làm phép chia:
a,(10 mũ 12 + 5 mũ 11 . 2 mũ 9 - 5 mũ 13 . 2 mũ 8) : 4 . 5 mũ 5 . 10 mũ 6
b,[5(x - y)mũ 4 - 3(x -y)mũ 3 + 4(x -y)mũ 2] : (y - x)mũ 2
c,[(x+y)mũ 5 - 2(x+y)mũ 4 + 3(x+y)mũ 3] : [-5(x+y)mũ 3]
a) \(\dfrac{10^{12}+5^{11}.2^9-5^{13}.2^8}{4.5^5.10^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^2.5^5.2^6.5^6}\)
\(=\dfrac{2^{12}.5^{12}+5^{11}.2^9-5^{13}.2^8}{2^8.5^{11}}\)
\(=\dfrac{\left(2^8.5^{11}\right)\left(2^4.5+2-5^2\right)}{2^8.5^{11}}\)
\(=2^4.5+2-5^2\)
\(=57\)
b) \(\dfrac{\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x-y\right)^2\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y-x\right)^2}\)
\(=\dfrac{\left(x^2+y^2-2xy\right)\left[5\left(x-y\right)^2-3\left(x-y\right)+4\right]}{\left(y^2+x^2-2xy\right)}\)
\(=5\left(x-y\right)^2-3\left(x-y\right)+4\)
c) \(\dfrac{\left(x+y\right)^5-2\left(x+y\right)^4+3\left(x+y\right)^3}{-5\left(x+y\right)^3}\)
\(=\dfrac{\left(x+y\right)^3\left[5\left(x+y\right)^2-2\left(x+y\right)+3\right]}{-5\left(x+y\right)^3}\)
\(=\dfrac{5\left(x+y\right)^2-2\left(x+y\right)+3}{-5}\)
bài 1: Rút gọn giá trị biểu thức:
a) x(x+y) - y(x+y) với x=(-1/2)mũ 5 : (1/2) mũ 4 và y=8 mũ 2 : (-2) mũ 5
b) (x-y) (x mũ 2 + xy + y mũ 2) -(x+y) ( x mũ 2 - y mũ 2 ) với x-y=0
c) x mũ 3 ( x mũ 2 - y mũ 2 ) + y mũ 2 ( x mũ 3 - y mũ 3 ) với x=16 mũ 5 : 8 mũ 5 : (-2)mũ 4 và |y|=1
d) x=y=0; x = y = 1; x = 1/2; y= -3/2; x= căn 4; y= căn 9
e) 5x ( 4x mũ 2 - 2x + 1) - 2x ( 10x mũ 2 - 5x-2) với x = -3 ( -5 )
g) 12- ( 2-3b ) + 35b - 9 ( b+1 ) với b= (1/5) mũ 5 : (1/4) mũ 2
f) ( x-y) ( x mũ 2 + xy + y mũ 2 ) + ( x+y ) ( x mũ 2 -xy + y mũ 2 ) với x=2 và y = 2013 mũ 2014
bài 1: Rút gọn giá trị biểu thức:
a) x(x+y) - y(x+y) với x=(-1/2)mũ 5 : (1/2) mũ 4 và y=8 mũ 2 : (-2) mũ 5
b) (x-y) (x mũ 2 + xy + y mũ 2) -(x+y) ( x mũ 2 - y mũ 2 ) với x-y=0
c) x mũ 3 ( x mũ 2 - y mũ 2 ) + y mũ 2 ( x mũ 3 - y mũ 3 ) với x=16 mũ 5 : 8 mũ 5 : (-2)mũ 4 và |y|=1
d) x=y=0; x = y = 1; x = 1/2; y= -3/2; x= căn 4; y= căn 9
e) 5x ( 4x mũ 2 - 2x + 1) - 2x ( 10x mũ 2 - 5x-2) với x = -3 ( -5 )
g) 12- ( 2-3b ) + 35b - 9 ( b+1 ) với b= (1/5) mũ 5 : (1/4) mũ 2
f) ( x-y) ( x mũ 2 + xy + y mũ 2 ) + ( x+y ) ( x mũ 2 -xy + y mũ 2 ) với x=2 và y = 2013 mũ 2014
a)<=>
A,=(x+y)(x-y)=x^2-y^2
x=(-1/2)^5:(1/2)^4=-1/2
x^2=1/4
y=8^2/(-2)^5=-2
y^2=4
A=1/4-4=-15/4
cho các đơn thức sau tìm nhóm đơn thức đồng dạng 5x mũ 2 y mũ 3; âm 5x mũ 3 y mũ 2; 1/2 x mũ 2 y mux2 z; x mũ 2 y mũ 3 âm 3/4 x mũ 3 mũ 2; âm x mũ 2 y mũ 2 z
A = 16 x mũ 4 - 8x mũ 3 y + 7x mũ 2 y mũ 2 - 9y mũ 4
B = -15 x mũ 4 + 3x mũ 3 y - x mũ 2 y mũ 2 - 6y mũ 4
C = 5x mũ 3 y + 3x mũ 2 y mũ 2 + 17 y mũ 4 + 1
Chứng minh rằng ít nhất 1 trong 3 đa thức này có giá trị dương với mọi x , y
Chứng minh:
a/ (x-2)(x mũ 2 +2x + 4) = x mũ 3 - 8
b/ (x mũ 3 + x mũ 2 y + xy mũ 2+ y mũ 3)(x-y) = x mũ 4 - y mũ 4
1 + 2xy - x mũ 2 - y mũ 2
a mũ 2 + b mũ 2 - c mũ 2 - d mũ 2 - 2ab + 2cd
a mũ 3 b mũ 3 - 1
x mũ 2 ( y - z) + y mũ 2 ( z - x ) + z mũ 2 ( x - y)
1 + 2xy - x2 - y2
= 1 - ( x2 - 2xy + y2 )
= 12 - ( x - y )2
= [ 1 - ( x - y ) ][ 1 + ( x - y ) ]
= ( y - x + 1 )( x - y + 1 )
a2 + b2 - c2 - d2 - 2ab + 2cd
= ( a2 - 2ab + b2 ) - ( c2 - 2cd + d2 )
= ( a - b )2 - ( c - d )2
= [ ( a - b ) - ( c - d ) ][ ( a - b ) + ( c - d ) ]
= ( a - b - c + d )( a - b + c - d )
a3b3 - 1
= ( ab )3 - 13
= ( ab - 1 )[ ( ab )2 + ab.1 + 12 ]
= ( ab - 1 )( a2b2 + ab + 1 )
x2( y - z ) + y2( z - x ) + z2( x - y )
= z2( x - y ) + x2y - x2z + y2z + y2x
= z2( x - y ) + ( x2y - y2x ) - ( x2z - y2z )
= z2( x - y ) + xy( x - y ) - z( x2 - y2 )
= z2( x - y ) + xy( x - y ) - z( x + y )( x - y )
= ( x - y )[ z2 + xy - z( x + y ) ]
= ( x - y )( z2 + xy - zx - zy )
= ( x - y )[ ( z2 - zx ) - ( zy - xy ) ]
= ( x - y )[ z( z - x ) - y( z - x ) ]
= ( x - y )( z - x )( z - y )
phân tích đa thức sau thành nhan tử
1, ( x mũ 2 - 9y mũ 2 ) - ( 4x + 12y )
3, - x mũ 2 + 2xy - y mũ 2 + 25
5, x mũ 3 - 6x mũ 2 + 9
7, x mũ 3 - x mũ 2 y - xy mũ 2 + y mũ 3
9, 9 ( x - 1 ) - 4( 2x + 3 ) mũ 2
\(1,\)
\(\left(x^2-9y^2\right)\left(4x+12y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-4\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x-3y-4\right)\)
\(3,\)
\(-x^2+2xy-y^2+25\)
\(=-\left(x^2-2xy+y^2\right)+25\)
\(=25-\left(x-y\right)^2\)
\(=5^2-\left(x-y\right)^2\)
\(=\left(5-x+y\right)\left(5+x-y\right)\)
\(5,\)
\(x^3-6x^2+9\)
\(=x\left(x^2-6x+9\right)\)
\(=x\left(x-3\right)^2\)