Tìm `x`
`(2x.1)^3=4(2x-1)`
Giải chi tiết giúp e với ạ
Làm phép chia (mọi người giải chi tiết từng ý 1 giúp e nha)
Bài 1: làm phép chia ( mọi người giải chi tiết giúp e nha)
a: (2x⁴ + x³ - 5x² - 3x - 3) : (x² - 3)
b: (2x³ + 5x² - 2x + 3) : (2x² - x + 1)
c: (x⁴ - x - 14) : (x-2)
d: (17x² - 6x⁴ + 5x³ - 23x + 7) : (7 - 3x² - 2x)
Mọi người cố gắng giải giúp e trước 2h20 nha e cần gấp lắn ạ. E cảm ơn mọi người
giúp e bài này vs ạ
Cho hai đa thức: A(x) = 2x - 4x^2 + 1 + x^3 và B(x) = -4x^2 + 5 - 2x
a, Tính A(x) + B(x)
b, Tìm đa thức P(x) biết : P(x) + B(x) = A(x)
giải ra chi tiết giúp e với ạ
`a)`
`A(x) + B(x) = 2x - 4x^2 + 1 + x^3 - 4x^2 + 5 - 2x`
`= x^3 - ( 4x^2 + 4x^2 ) + ( 2x - 2x ) + ( 1+ 5 )`
`= x^3 - 8x^2 + 6`
__________________________________________________________
`b)`
`P(x) + B(x) = A(x)`
`=>P(x) = A(x) - B(x)`
`=>P(x) = 2x - 4x^2 + 1 + x^3 + 4x^2 - 5 + 2x`
`=>P(x) = x^3 + ( -4x^2 + 4x^2 ) + ( 2x + 2x ) + ( 1 - 5 )`
`=>P(x) = x^3 + 4x - 4`
1) Tìm min A= \(\dfrac{3}{2+\sqrt{2x-x^2+7}}\)
2)Tìm max B =\(x+\sqrt{2\left(1-x\right)}\)
Giúp em với ạ, giải chi tiết cho em dễ hiểu được khog ạ
a.
\(2x-x^2+7=-\left(x^2-2x+1\right)+8=-\left(x-1\right)^2+8\le8\)
\(\Rightarrow2+\sqrt{2x-x^2+7}\le2+\sqrt{8}=2+2\sqrt{2}\)
\(\Rightarrow\dfrac{3}{2+\sqrt{2x-x^2+7}}\ge\dfrac{3}{2+2\sqrt{2}}=\dfrac{3\sqrt{2}-3}{2}\)
\(A_{min}=\dfrac{3\sqrt{2}-3}{2}\) khi \(x=1\)
b. ĐKXĐ: \(x\le1\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}-\dfrac{1}{2}-1\right)\)
\(B=-\left(1-x-\sqrt{2\left(1-x\right)}+\dfrac{1}{2}\right)+\dfrac{3}{2}\)
\(B=-\left(\sqrt{1-x}-\dfrac{\sqrt{2}}{2}\right)^2+\dfrac{3}{2}\le\dfrac{3}{2}\)
\(B_{max}=\dfrac{3}{2}\) khi\(x=\dfrac{1}{2}\)
tìm GTLN của biểu thức:
\(E=\dfrac{5x^2+15}{2x^2+3}\)
giúp mk với ạ cần lời giải chi tiết nhé
\(E=\dfrac{\dfrac{5}{2}\left(2x^2+3\right)+\dfrac{15}{2}}{2x^2+3}=\dfrac{5}{2}+\dfrac{15}{2\left(2x^2+3\right)}\)
Do \(2x^2+3\ge3;\forall x\Rightarrow\dfrac{15}{2\left(2x^2+3\right)}\le\dfrac{15}{2.3}=\dfrac{5}{2}\)
\(\Rightarrow E\le\dfrac{5}{2}+\dfrac{5}{2}=5\)
\(E_{max}=5\) khi \(x=0\)
Tìm x :(x-2)(2x +1)-5(x +3)=2x(x-3)+4(1+2x)-2(1+x)Mn ơi giúp mình với !9h30 sáng mai là mình đi học rồi.Lời giải chi tiết nha,ai nhanh mình tick cho
<=> 2x^2 +x-4x-2-5x-15=2x^2-6x+4+8x-2-2x
2x^2-8x-17-2x^2-2=0
-8x-19=0
x=-19/8
(x-2).(2x+1)-5(x+3)=2x(x-3)+4(1+2x)-2(1+x)
3x-4x+x-2-5x-15=3x-6x+4+8x-2-2x
-5x-17=3x+2
-19=8x
-19/8=x
Vậy x=-19/8
(3-2x)^2=(x-2)(2x-3)
giải chi tiết giúp mình với ạ
\(\left(3-2x\right)^2=\left(x-2\right)\left(2x-3\right)\)
\(\Leftrightarrow\left(3x-2\right)^2-\left(x-2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow9x^2-12x+4-\left(2x^2-7x+6\right)=0\)
\(\Leftrightarrow9x^2-12x+4-2x^2+7x-6=0\)
\(\Leftrightarrow7x^2-5x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{7}\end{matrix}\right.\)
Vậy \(S=\left\{1;-\dfrac{2}{7}\right\}\)
`(3-2x)^2=(x-2)(2x-3)`
`<=>(2x-3)^2 -(x-2)(2x-3)=0`
`<=> (2x-3)(2x-3-x+2)=0`
`<=> (2x-3)(x-1)=0`
\(< =>\left[{}\begin{matrix}2x-3=0\\x-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=1\end{matrix}\right.\)
mọi người ơi giúp em với ạ
x-3/3 = 4-1-2x/5
giải chi tiết giúp em ạ em cảm ơn ạ
`x - 3/3 = 4 - 1 - 2x/5`
`->` `x = (-5)`
\(\dfrac{x-3}{3}=4-\dfrac{1-2x}{5}\)
=>5(x-3)=60-3(1-2x)
=>5x-15=60-3+6x
=>5x-15=6x+57
=>6x+57=5x-15
hay x=-72(nhận)
Dạng 4 : Phân thức đại số các phép toán trên phân thức . Bài tập 1 Thực hiện phép tính a,. 2/2x + 3x-3/2x-1 + 2x^2+1/4x^2-2x b, 5/6x^2y +7/12xy^2 + 11/18xy c,. x^3+2x/x^3+1 + 2x/x^2-x+1 + 1/x+1 Mn giúp em với ạ. Hãy cho em xin lời giải chi tiết từng bước làm ạ
c: \(=\dfrac{x^3+2x+2x^2+2x+x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x^2+2x+1}{x^2-x+1}\)
Số nghiệm của phương trình \(\left(x+3\right)\sqrt{2x^2+1}=x^2+x+3\) là.
Mọi người giải chi tiết giúp em với ạ.
\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)
=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)
=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)
=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)
=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)
=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)
=>Phương trình này có 2 nghiệm