Giải pt : \(\sqrt[3]{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
giải phương trình vô tỉ sau
1) \(\sqrt{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
2) \(4x^4+x^2+3x+4=3\sqrt[3]{16x^3+12x}\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt :
a,\(9x^2-6x-5=\sqrt{3x+5}\)
b, \(9x^2+12x-2=\sqrt{3x+8}\)
c, \(x^2-4x-3=\sqrt{x+5}\)
d,\(x^2-6x-2=\sqrt{x+8}\)
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x\ge-\dfrac{8}{3}\)
\(\left(3x+2\right)^2-6-\sqrt{3x+8}=0\)
Đặt \(\sqrt{3x+8}=t\ge0\Rightarrow3x+2=t^2-6\)
\(\left(t^2-6\right)^2-6-t=0\)
\(\Leftrightarrow t^4-12t^2-t+30=0\)
\(\Leftrightarrow\left(t^2+t-5\right)\left(t^2-t-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+8}=3\\\sqrt{3x+8}=\dfrac{\sqrt{21}-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
giải phương trình vô tỉ sau
1) \(\sqrt{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
2) \(4x^2-11x+10=\left(x-1\right).\sqrt{2x^2-6x+2}\)
giải pt :
a, \(3x^2+3x+2=\left(x+6\right)\sqrt{x^2-2x-3}\)
b, \(\sqrt{x}+\sqrt{x+1}=\sqrt{x^2+x}+1\)
c, \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}=\sqrt{x^2-9x+18}\)
c.
ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge6\end{matrix}\right.\)
\(\sqrt{\left(x-3\right)\left(x-5\right)}+\sqrt{\left(x-3\right)\left(x+5\right)}=\sqrt{\left(x-3\right)\left(x-6\right)}\)
- Với \(x\ge6\) , do \(x-3>0\) pt trở thành:
\(\sqrt{x-5}+\sqrt{x+5}=\sqrt{x-6}\)
Do \(\left\{{}\begin{matrix}\sqrt{x-5}>\sqrt{x-6}\\\sqrt{x+5}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x-5}+\sqrt{x+5}>\sqrt{x-6}\) pt vô nghiệm
- Với \(x\le-5\) pt tương đương:
\(\sqrt{\left(3-x\right)\left(5-x\right)}+\sqrt{\left(3-x\right)\left(-x-5\right)}=\sqrt{\left(3-x\right)\left(6-x\right)}\)
Do \(3-x>0\) pt trở thành:
\(\sqrt{5-x}+\sqrt{-x-5}=\sqrt{6-x}\)
\(\Leftrightarrow-2x+2\sqrt{x^2-25}=6-x\)
\(\Leftrightarrow2\sqrt{x^2-25}=x+6\) (\(x\ge-6\))
\(\Leftrightarrow4\left(x^2-25\right)=x^2+12x+36\)
\(\Leftrightarrow3x^2-12x-136=0\Rightarrow x=\dfrac{6-2\sqrt{111}}{3}\)
a.
Kiểm tra lại đề, pt này không giải được
b.
ĐKXĐ: \(x\ge0\)
\(\sqrt{x\left(x+1\right)}-\sqrt{x}+1-\sqrt{x+1}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-1\right)-\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x+1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x+1}=1\end{matrix}\right.\)
\(\Leftrightarrow...\)
Giải PT a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\)
b. \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\)
c. \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
d. \(\sqrt{9x-2x^2}-9x+2x^2+6=0\)
e. \(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)
f. \(\sqrt{x^2+x-5}+\sqrt{x-x^2+3}=x^2-3x+4\)
a, \(5\sqrt{2x^2+3x+9}=2x^2+3x+3\) (*)
Đặt \(2x^2+3x=a\left(a\ge-9\right)\)
=> \(5\sqrt{a+9}=a+3\)
<=> \(25\left(a+9\right)=a^2+6a+9\)
<=> \(25a+225=a^2+6a+9\)
<=> \(0=a^2+6a+9-25a-225=a^2-19a-216\)
<=> 0= \(a^2-27a+8a-216\)
<=> \(\left(a-27\right)\left(a+8\right)=0\)
=> \(\left[{}\begin{matrix}a=27\\a=-8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}2x^2+3x=27\\2x^2+3x=-8\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}2x^2+3x-27=0\\2x^2+3x+8=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}\left(x-3\right)\left(2x+9\right)=0\\2\left(x^2+2.\frac{3}{4}+\frac{9}{16}\right)+\frac{55}{8}=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=3\left(tm\right)\\x=-\frac{9}{2}\left(tm\right)\\2\left(x+\frac{3}{4}\right)^2=-\frac{55}{8}\left(ktm\right)\end{matrix}\right.\)
Vậy pt (*) có tập nghiệm \(S=\left\{3,-\frac{9}{2}\right\}\)
b, \(9-\sqrt{81-7x^3}=\frac{x^3}{2}\left(đk:x\le\sqrt[3]{\frac{81}{7}}\right)\)(*)
<=> \(\sqrt{81-7x^3}=9-\frac{x^3}{2}\)
<=>\(81-7x^3=\left(9-\frac{x^3}{2}\right)^2=81-9x^3+\frac{x^6}{4}\)
<=> \(-7x^3+9x^3-\frac{x^6}{4}=0\) <=> \(2x^3-\frac{x^6}{4}=0\)<=> \(8x^3-x^6=0\)
<=> \(x^3\left(8-x^2\right)=0\)
=> \(\left[{}\begin{matrix}x=0\\8=x^2\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=0\left(tm\right)\\x=\pm2\sqrt{2}\left(ktm\right)\end{matrix}\right.\)
Vậy pt (*) có nghiệm x=0
d,\(\sqrt{9x-2x^2}-9x+2x^2+6=0\) (*) (đk: \(0\le x\le\frac{1}{2}\))
<=> \(\sqrt{9x-2x^2}-\left(9x-2x^2\right)+6=0\)
Đặt \(\sqrt{9x-2x^2}=a\left(a\ge0\right)\)
Có \(a-a^2+6=0\)
<=> \(a^2-a-6=0\) <=> \(a^2-3x+2x-6=0\)
<=> \(\left(a-3\right)\left(a+2\right)=0\)
=> \(a-3=0\) (vì a+2>0 vs mọi \(a\ge0\))
<=> a=3 <=>\(\sqrt{9x-2x^2}=3\) <=> \(9x-2x^2=9\)
<=> 0=\(2x^2-9x+9\) <=> \(2x^2-6x-3x+9=0\) <=>\(\left(2x-3\right)\left(x-3\right)=0\)
=> \(\left[{}\begin{matrix}2x=3\\x=3\end{matrix}\right.< =>\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)(t/m)
Vậy pt (*) có tập nghiệm \(S=\left\{\frac{3}{2},3\right\}\)
giải pt
a) \(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
b) \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
c) \(\sqrt{3x^2-5x+7}+\sqrt{3x^2-7x+2}=3\)
d) \(\sqrt{x^2+3x+2}=\sqrt{2x^2+9x+7}-\sqrt{x^2+6x+5}\)
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3x^2-5x+7}=3-\sqrt{3x^2-7x+2}\)
\(\Rightarrow3x^2-5x+7=3x^2-7x+11-6\sqrt{3x^2-7x+2}\)
\(\Leftrightarrow3\sqrt{3x^2-7x+2}=2-x\) (\(x\le2\))
\(\Leftrightarrow9\left(3x^2-7x+2\right)=x^2-4x+4\)
\(\Leftrightarrow26x^2-59x+14=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{26}\end{matrix}\right.\)
Do biến đổi ko tương đương nên cần thay lại nghiệm vào pt ban đầu kiểm tra
d/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{x^2+3x+2}+\sqrt{x^2+6x+5}=\sqrt{2x^2+9x+7}\)
\(\Leftrightarrow2x^2+9x+7+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=2x^2+9x+7\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2\left(x+2\right)\left(x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
giải pt sau
a) \(\sqrt{3x^2-9x+1}=x-2\)
b) \(\sqrt{x^4+x^2+1}+\sqrt{3}\left(x^2+1\right)=3\sqrt{3x}\)