Chứng minh rằng \(\forall x>0\)thì x+\(\frac{1}{x}\)\(\ge2\)
Chứng minh rằng \(\forall x>0\)thì \(x+\frac{1}{x}\ge2\)
Ta có: \(x+\frac{1}{x}-2=\frac{x^2}{x}+\frac{1}{x}-\frac{2x}{x}\)
\(=\frac{x^2+1-2x}{x}=\frac{x\left(x-2\right)+1}{x}\)
Lại có \(x>0\Rightarrow x\left(x-2\right)+1\ge0\)
\(\Rightarrow\frac{x\left(x-2\right)+1}{x}\ge0\)
\(\Rightarrow x+\frac{1}{x}-2\ge0\)
\(\Rightarrow x+\frac{1}{x}\ge2\)\(\left(đpcm\right)\)
Minh Tâm Bạn tự đặt câu hỏi rồi tự giải có ý nghĩa gì không ???
Chứng minh rằng:
\(x+\dfrac{1}{x}\ge2\left(\forall x>0\right)\)
ap dung BDT co si cho 2 so ko am
\(x+\dfrac{1}{x}\ge2\sqrt{x.\dfrac{1}{x}}\)
<=>\(x+\dfrac{1}{x}\ge2\) (dpcm)
Chứng minh các bất đẳng thức sau: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\left(\forall x,y>0\right)\)
Biến đổi tương đương:
\(\Leftrightarrow\dfrac{x^2+y^2}{xy}\ge2\)
\(\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh
Cách khác so với anh Nguyễn Việt Lâm
Ta có: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\) (đpcm)
Chứng minh các bất đẳng thức sau :
a) \(e^x+\cos x\ge2+x-\dfrac{x^2}{2};\forall x\in\mathbb{R}\)
b) \(e^x-e^{-x}\ge2\ln\left(x+\sqrt{1+x^2}\right);\forall x\ge0\)
c) \(8\sin^2\dfrac{x}{2}+\sin2x>2x;\forall x\in\) (\(0;\pi\)]
1/ Cho $$( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
P OI cai nay dung bat dang thuc co si do
1/ Cho \(x+y+x=\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)( x,y,z>0). Chứng minh rằng: x=y=z
2/ Cho hai số thực x,y thỏa mãn: xy=1 và x>y. Chứng minh rằng: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
3/ Chứng minh rằng \(a+b\ge2\sqrt{ab}\)
Giúp mình với!
1/ Sửa đề: \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\) \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)
\(\Leftrightarrow\) \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)
\(\Leftrightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)
Với mọi x, y, z ta luôn có: \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\) \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\) \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)
\(\Rightarrow\) \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
Do đó dấu "=" xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\) \(\Leftrightarrow\) x = y = z
3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh
\(a+b\ge2\sqrt{ab}\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\) \(\Leftrightarrow\) \(\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\) \(a^2+b^2+2ab-4ab\ge0\) \(\Leftrightarrow\) \(a^2-2ab+b^2\ge0\) \(\Leftrightarrow\) \(\left(a-b\right)^2\ge0\)
Đẳng thức xảy ra khi và chỉ khi a = b
2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:
\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)
Cho 2 số x,y khác 0. Chứng minh rằng:
\(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
\(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\left(x+y\right)^2-2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
\(\Leftrightarrow\left(x+y\right)^2-2\left(xy+1\right)+\left(\frac{1+xy}{x+y}\right)^2\ge0\)
\(\Leftrightarrow\left(x+y\right)^2-\frac{2\left(x+y\right)\left(xy+1\right)}{\left(x+y\right)}+\left(\frac{1+xy}{x+y}\right)^2\ge0\)
\(\Leftrightarrow\left(x+y-\frac{xy+1}{x+y}\right)^2\ge0\) (đúng)
Vậy ...
chứng minh rằng với \(\forall\) x > 1 thì \(4x-5+\frac{1}{x-1}\ge3\)
Áp dụng AM GM
\(4x-5+\frac{1}{x-1}=4\left(x-1\right)+\frac{1}{x-1}-1\ge2\sqrt{4\left(x-1\right).\frac{1}{x-1}}-1=3\)(đpcm)
cho 2 số x,y khác 0 chứng minh rằng
\(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\)
Theo Cauche ta có:
\(\left(x+y\right)^2+\left(\frac{1+xy}{x+y}\right)^2\ge2\left(x+y\right).\frac{1+xy}{x+y}=2\left(1+xy\right)=2+2xy\)
<=> \(x^2+y^2+2xy+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy\)
<=> \(x^2+y^2+\left(\frac{1+xy}{x+y}\right)^2\ge2+2xy-2xy=2\)=> ĐPCM