Áp dụng BĐT cô-si ta có : \(x\)+\(\frac{1}{x}\)\(\ge\)\(2\sqrt{x.\frac{1}{x}}=2\sqrt{1}=2\)\(\Rightarrow\)ĐPCM.
Áp dụng BĐT cô-si ta có : \(x\)+\(\frac{1}{x}\)\(\ge\)\(2\sqrt{x.\frac{1}{x}}=2\sqrt{1}=2\)\(\Rightarrow\)ĐPCM.
Chứng minh rằng \(\forall x>0\)thì \(x+\frac{1}{x}\ge2\)
Chứng minh rằng
a) \(x^2+4x+5>0\forall x\)
b)\(x^2-x+1>0\forall x\)
c)\(12x-4x^2-10< -1\forall x\)
Chứng minh rằng: \(\frac{a_{n-1}+a_{n+1}}{a_n+a_{n-2}}\) là phân số tối giản với \(\forall n\ge2\)
Giups minh bài này với ạ !!!!!!!!!!!!!!!
Cho hàm số f(x) thỏa mãn (x+1).f(x+2) = x-4 .f (x-1) \(\forall\)x . . Chứng minh rằng có ít nhất 2 giá trị của x để f(x)=0
Chứng minh rằng nếu các số x, y, z khác 0 thỏa mãn \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\) thì x = y = z
cho A = 0\(\frac{\sqrt{x=1}}{\sqrt{x-1}}\)Chứng minh rằng với x = \(\sqrt[]{\frac{16}{9}}\)và x = \(\frac{25}{9}\)thì A có giá trị nguyên
Vẽ đồ thị các hàm số :
a ) \(y=\hept{\begin{cases}2x\forall x\ge0\\x\forall x< 0\end{cases}}\)
b ) \(y=\hept{\begin{cases}2x\forall x\ge0\\-\frac{1}{2}x\forall x< 0\end{cases}}\)
Cho hàm số \(f\left(x\right)\)xác định với \(\forall x\ne0\)thỏa mãn:
a) \(f\left(1\right)=1\)
b) \(f\left(\frac{1}{x}\right)=\frac{1}{x^2}\cdot f\left(x\right)\)
c) \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)với \(\forall x_1;x_2\ne0\)và \(x_1+x_2\ne0\)
Chứng minh rằng: \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)
Chứng minh rằng nếu 0<x1<x2<........<x16 thì \(\frac{x_1+x_2+.....+x_{16}}{x_4+x_8+x_{12}+x_{16}}\)<4