cứu vs
cứu mk vs :
tìm x :
1+3+5+...+(2x+1)=2601
cứu vs !!!!!!!!!!!!!!1
\(1+3+5+...+\left(2x+1\right)=2601\)
số số hạng: \(\left[\left(2x+1\right)-1\right]:2+1=x+1\)
tổng: \(\left(2x+1\right)+1:2x\left(x+1\right)=\left(x+1\right)^2\)
\(\left(x+1\right)^2=2601\)
\(\Rightarrow\orbr{\begin{cases}x+1=51\\x+1=-51\end{cases}\Rightarrow\orbr{\begin{cases}x=50\\x=-52\end{cases}}}\)
số các số hạng có đc là ( 2x-1+1):2+1 = x+1 số hạng
theo ta có : (2x+2)(x+1)/2 =2601
2(x+1)(x+1)/2=2601
(x+1)2 =2601
\(\Rightarrow\) \(\hept{\begin{cases}x+1=\sqrt{2601}\\\\x+1=-\sqrt{2601}\end{cases}}\)
vậy x=50 hoặc x=-52
Cứu vs:(((
cứu vs
2:
a: A=(x-1)(x+3)
=x^2+3x-x-3
=x^2+2x-3
=x^2+2x+1-4
=(x+1)^2-4>=-4
Dấu = xảy ra khi x=-1
b: B=(x-2)(x+5)
=x^2+5x-2x-10
=x^2+3x-10
=x^2+3x+9/4-49/4
=(x+3/2)^2-49/4>=-49/4
Dấu = xảy ra khi x=-3/2
c: C=(x+2)(x+3)
=x^2+5x+6
=x^2+5x+25/4-1/4
=(x+5/2)^2-1/4>=-1/4
Dấu = xảy ra khi x=-5/2
d: D=(x-2)(x-4)
=x^2-6x+8
=x^2-6x+9-1
=(x-3)^2-1>=-1
Dấu = xảy ra khi x=3
e: E=(x+3)(x-2)
=x^2-2x+3x-6
=x^2+x-6
=x^2+x+1/4-25/4
=(x+1/2)^2-25/4>=-25/4
Dấu = xảy ra khi x=-1/2
g: G=(x+1)(x+5)
=(x+3-2)(x+3+2)
=(x+3)^2-4>=-4
Dấu = xảy ra khi x=-3
Cứu em vs
Diện tích là:
\(70\cdot70=4900\left(m^2\right)\)
Cứu em vs
cứu tớ vs
cứu em vs
\(1,=\left(3x^4-2x^3+x^2-6x^3+4x^2-2x-15x^2+10x-5\right):\left(3x^2-2x+1\right)\\ =\left(3x^2-2x+1\right)\left(x^2-2x-5\right):\left(3x^2-2x+1\right)\\ =x^2-2x-5\\ 2,=\left(x^4+x^2+2x^3+2x-x^2-1+8x-24\right):\left(x^2+1\right)\\ =\left[\left(x^2+1\right)\left(x^2+2x-1\right)+8x-24\right]:\left(x^2+1\right)\\ =x^2+2x-1\left(dư.8x-24\right)\\ 3,=\left(3x^4-8x^3-10x^2+8x-5\right):\left(3x^2-2x+1\right)\\ =x^2-2x-5\left(câu.1\right)\\ 4,=\left(x^3-5x^2-x^2+5x-3x+15\right):\left(x-5\right)\\ =\left(x-5\right)\left(x^2-x-3\right):\left(x-5\right)\\ =x^2-x-3\)
\(5,=\left(-12x^2+13x-5\right):\left(3x^2-2x+1\right)\\ =\left(-12x^2+8x+4+5x-9\right):\left(3x^2-2x+1\right)\\ =\left(3x^2-2x+1\right)\left(-4\right)-9\\ =-4\left(dư.-9\right)\\ 6,=\left(x^3+2x^2-5x^2-10x+12x+24\right):\left(x+2\right)\\ =\left(x+2\right)\left(x^2-5x+12\right):\left(x+2\right)\\ =x^2-5x+12\\ 7,=\left(2x^3-x^2+x+6x^2-3x+3\right):\left(2x^2-x+1\right)\\ =\left(2x^2-x+1\right)\left(x+3\right):\left(2x^2-x+1\right)\\ =x+3\\ 8,=\left(2x^3+4x^2-x^2-2x+x+2\right):\left(x+2\right)\\ =\left(x+2\right)\left(2x^2-x+1\right):\left(x+2\right)\\ =2x^2-x+1\)
\(9,=\left(9x^4-16x^2+4\right):\left(3x^2+2x-2\right)\\ =\left(9x^4+6x^3-6x^2-6x^3-4x^2+4x-6x^2-4x+4\right):\left(3x^2+2x-2\right)\\ =\left(3x^2+2x-2\right)\left(3x^2-2x-2\right):\left(3x^2+2x-2\right)\\ =3x^2-2x-2\\ 10,=\left(2x^3+4x^2-7x^2-14x+15x+30\right):\left(x+2\right)\\ =\left(x+2\right)\left(2x^2-7x+15\right):\left(x+2\right)\\ =2x^2-7x+15\)
cứu mik vs
Cứu mk vs
ĐKXĐ: \(y\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy+x+y=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)
\(\Rightarrow\left\{{}\begin{matrix}u+v=3\\uv=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=1\\v=2\end{matrix}\right.\) (loại) hoặc \(\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Rightarrow x=y=1\)