Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
TM
23 tháng 1 2024 lúc 21:46

\(\left\{{}\begin{matrix}2x-y=m+1\\x+y=2m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=3m\\2x-y=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m-1\end{matrix}\right.\)

Theo đề: \(x^2-2y-1=0\)

\(\Leftrightarrow m^2-2\left(m-1\right)-1=0\)

\(\Leftrightarrow m^2-2m+1=0\)

\(\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=1\).

Vậy: \(m=1.\)

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 1 2024 lúc 20:40

Hệ có nghiệm duy nhất khi: \(\dfrac{3}{1}\ne\dfrac{m}{-2}\Rightarrow m\ne-6\)

Khi đó ta có:

\(\left\{{}\begin{matrix}3x+my=5\\x-2y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}6x+2my=10\\mx-2my=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m+6\right)x=3m+10\\y=\dfrac{x-3}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3m+10}{m+6}\\y=\dfrac{x-3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3m+10}{m+6}\\y=\dfrac{-4}{m+6}\end{matrix}\right.\)

\(2x+y=1\Rightarrow\dfrac{2\left(3m+10\right)}{m+6}+\dfrac{-4}{m+6}=1\)

\(\Leftrightarrow\dfrac{6m+16}{m+6}=1\)

\(\Rightarrow6m+16=m+6\)

\(\Rightarrow m=-2\)

Bình luận (0)
H24
Xem chi tiết
NL
15 tháng 1 2024 lúc 22:31

\(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=2m\\3x-2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7x=2m+5\\y=m-2x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2m+5}{7}\\y=\dfrac{3m-10}{7}\end{matrix}\right.\)

Để \(x>0;y< 0\Rightarrow\left\{{}\begin{matrix}\dfrac{2m+5}{7}>0\\\dfrac{3m-10}{7}< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m>-\dfrac{5}{2}\\m< \dfrac{10}{3}\end{matrix}\right.\) \(\Rightarrow-\dfrac{5}{2}< m< \dfrac{10}{3}\)

Bình luận (0)
HT
Xem chi tiết
H24
Xem chi tiết
NM
17 tháng 11 2021 lúc 10:57

\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\m-y+ym+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\ym=1-m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m-\dfrac{1-m}{m}=\dfrac{m^2+m-1}{m}\\y=\dfrac{1-m}{m}\end{matrix}\right.\)

\(x+2y>0\\ \Leftrightarrow\dfrac{m^2+m-1}{m}+\dfrac{2-2m}{m}>0\\ \Leftrightarrow\dfrac{m^2-m+1}{m}>0\)

Mà \(m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy \(m>0\) thỏa đề

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NT
17 tháng 1 2024 lúc 22:50

1: Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{-2}{-1}=2\)

=>\(m\ne\dfrac{1}{2}\)

\(\left\{{}\begin{matrix}x-2y=5\\mx-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y=5\\y=mx-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2\left(mx-4\right)=5\\y=mx-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(1-2m\right)=5-8=-3\\y=mx-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{3m}{2m-1}-4=\dfrac{3m-4\left(2m-1\right)}{2m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2m-1}\\y=\dfrac{-5m+4}{2m-1}\end{matrix}\right.\)

Để x,y trái dấu thì xy<0

=>\(\dfrac{3\left(-5m+4\right)}{\left(2m-1\right)^2}< 0\)

=>-5m+4<0

=>-5m<-4

=>\(m>\dfrac{4}{5}\)

2: Để x=|y| thì \(\dfrac{3}{2m-1}=\left|\dfrac{-5m+4}{2m-1}\right|\)

=>\(\left[{}\begin{matrix}\dfrac{-5m+4}{2m-1}=\dfrac{3}{2m-1}\\\dfrac{-5m+4}{2m-1}=\dfrac{-3}{2m-1}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}-5m+4=3\\-5m+4=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1}{5}\left(nhận\right)\\m=\dfrac{7}{5}\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NT
22 tháng 1 2024 lúc 23:43

Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{m}{2}\ne\dfrac{-2}{-m}\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

\(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y=mx-2m+1\\2x-my=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-m\left(x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\right)=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\2x-x\cdot\dfrac{m^2}{2}+m^2-\dfrac{1}{2}m=9-3m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\left(2-\dfrac{m^2}{2}\right)=-m^2+\dfrac{1}{2}m-3m+9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\\x\cdot\dfrac{4-m^2}{2}=-m^2-\dfrac{5}{2}m+9=\dfrac{-2m^2-5m+18}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-2m^2-5m+18}{4-m^2}=\dfrac{2m^2+5m-18}{m^2-4}\\y=x\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{\left(2m+9\right)\left(m-2\right)}{\left(m-2\right)\left(m+2\right)}=\dfrac{2m+9}{m+2}\\y=\dfrac{2m+9}{m+2}\cdot\dfrac{m}{2}-m+\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+9m-2m\left(m+2\right)+m+2}{2\left(m+2\right)}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2m+9}{m+2}\\y=\dfrac{2m^2+10m+2-2m^2-4m}{2\left(m+2\right)}=\dfrac{6m+2}{2\left(m+2\right)}=\dfrac{3m+1}{m+2}\end{matrix}\right.\)

Để x,y nguyên thì \(\left\{{}\begin{matrix}2m+9⋮m+2\\3m+1⋮m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m+4+5⋮m+2\\3m+6-5⋮m+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5⋮m+2\\-5⋮m+2\end{matrix}\right.\)

=>\(5⋮m+2\)

=>\(m+2\in\left\{1;-1;5;-5\right\}\)

=>\(m\in\left\{-1;-3;3;-7\right\}\)

Bình luận (0)