H24

undefined

Cho hệ phương trình \(\left\{{}\begin{matrix}x+y=m\\x+\left(m+1\right)y=1\end{matrix}\right.\)

Tìm m để hệ có nghiệm duy nhất (x;y) thỏa mãn x+2y>0

 

NM
17 tháng 11 2021 lúc 10:57

\(HPT\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\m-y+ym+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-y\\ym=1-m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m-\dfrac{1-m}{m}=\dfrac{m^2+m-1}{m}\\y=\dfrac{1-m}{m}\end{matrix}\right.\)

\(x+2y>0\\ \Leftrightarrow\dfrac{m^2+m-1}{m}+\dfrac{2-2m}{m}>0\\ \Leftrightarrow\dfrac{m^2-m+1}{m}>0\)

Mà \(m^2-m+1=\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

Vậy \(m>0\) thỏa đề

Bình luận (0)