Những câu hỏi liên quan
FA
Xem chi tiết
MY
28 tháng 1 2022 lúc 21:46

\(a^2=b^2+c^2-2bc.\cos A\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}=\sqrt{7^2+5^2-\dfrac{2.7.5.3}{5}}=4\sqrt{2}\)

\(\sin A=\sqrt{1-cos^2A}=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

\(p=\dfrac{a+b+c}{2}=6+2\sqrt{2}\)

\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=14\)

\(R=\dfrac{a}{2.sinA}=\dfrac{4\sqrt{2}}{\dfrac{2.4}{5}}=\dfrac{5\sqrt{2}}{2}\)

\(r=\dfrac{S}{p}=\dfrac{14}{6+2\sqrt{2}}=3-\sqrt{2}\)

\(ha=\dfrac{2S}{a}=\dfrac{2.14}{4\sqrt{2}}=2\sqrt{2}\)

Bình luận (0)
NT
28 tháng 1 2022 lúc 21:37

\(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\)

\(\Leftrightarrow7^2+5^2-a^2=\dfrac{3}{5}\cdot2\cdot7\cdot5=3\cdot2\cdot7=42\)

\(\Leftrightarrow a^2=32\)

hay \(a=4\sqrt{2}\)

\(\sin A=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)

Bình luận (0)
LL
Xem chi tiết
H24
8 tháng 9 2021 lúc 14:09

undefined

Bình luận (0)
NT
8 tháng 9 2021 lúc 14:13

\(\sin\widehat{A}=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

\(\cot\widehat{A}=\dfrac{5}{13}:\dfrac{12}{13}=\dfrac{5}{12}\)

\(\tan\widehat{B}=\dfrac{5}{12}\)

Bình luận (0)
NC
Xem chi tiết
NL
26 tháng 2 2021 lúc 13:54

\(\overrightarrow{BA}=\left(3;0\right)\Rightarrow AB=3=AC\) ; \(\overrightarrow{AC}=\left(a-2;b+2\right)\) ; \(\overrightarrow{BC}=\left(a+1;b+2\right)\)

\(BC=\sqrt{AB^2+AC^2-2AB.AC.cosA}=\dfrac{6\sqrt{5}}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b+2\right)^2=9\\\left(a+1\right)^2+\left(b+2\right)^2=\dfrac{36}{5}\end{matrix}\right.\) 

\(\Leftrightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(\dfrac{1}{5};-\dfrac{22}{5}\right)\\\left(a;b\right)=\left(\dfrac{1}{5};\dfrac{2}{5}\right)\end{matrix}\right.\)

Bình luận (1)
PB
Xem chi tiết
CT
6 tháng 4 2019 lúc 16:58

Chọn A.

Áp dụng định lí cosin trong tam giác ta có:

a2 = b2 + c2 = 2bc.cosA = 72 + 52 - 2.7.5.3/5 = 32

Nên 

Mặt khác: sin2A + cos2A = 1 nên sin2A = 1 - cos2A = 16/25

Mà sinA > 0 nên  sinA = 4/5

Mà: 

Bình luận (0)
PN
Xem chi tiết
HN
Xem chi tiết
LP
20 tháng 11 2021 lúc 19:42

đề có sai ko bn?

Bình luận (3)
LN
20 tháng 11 2021 lúc 19:43

undefined

Bình luận (11)
LL
20 tháng 11 2021 lúc 19:47

góc A=36
góc B=54
góc C=90

Bình luận (3)
H24
Xem chi tiết
AH
29 tháng 12 2018 lúc 0:12

Lời giải:
Đặt \(\frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7}=k\Rightarrow \left\{\begin{matrix} a+b=6k\\ b+c=5k\\ c+a=7k\end{matrix}\right.(1)\)

\(\Rightarrow 2(a+b+c)=6k+5k+7k=18k\Rightarrow a+b+c=9k(2)\)

Từ \((1);(2) \Rightarrow \left\{\begin{matrix} c=3k\\ a=4k\\ b=2k\end{matrix}\right.\)

Theo định lý hàm số cos ta có:
\(a^2=b^2+c^2-2bc\cos A\)

\(\Rightarrow \cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{(2k)^2+(3k)^2-(4k)^2}{2.2k.3k}=\frac{-1}{4}\)

Tương tự: \(\cos B=\frac{c^2+a^2-b^2}{2ac}=\frac{7}{8}\)

\(\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{11}{16}\)

Bình luận (0)
GN
Xem chi tiết
DN
16 tháng 12 2021 lúc 8:18

B1:
a.(-14/39)
b.45 độ
B2:
a.x=(-13/10)
b.
c.0

Bình luận (2)
ND
16 tháng 12 2021 lúc 8:26

Bài 1:

a/\(\dfrac{17}{3}-\dfrac{5}{3}=\dfrac{17-5}{3}=\dfrac{12}{3}\)=4

b/Tam giác ABC có:

góc A+góc B+góc C=180 độ

=>70 độ+65 độ+góc C=180 độ

=>góc C =180 độ-70 độ-65 độ=45 độ

Bài 2:

a/\(x+3\dfrac{1}{2}=\dfrac{11}{5}=>x+\dfrac{7}{2}=\dfrac{11}{5}=>x=\dfrac{11}{5}-\dfrac{7}{2}=\dfrac{-13}{10}\)

c/\(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right):\dfrac{4}{31}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right):\dfrac{4}{31}\)

=>\(\left(\dfrac{-3}{7}+\dfrac{5}{11}\right).\dfrac{31}{4}+\left(\dfrac{-4}{7}+\dfrac{6}{11}\right).\dfrac{31}{4}\)

=>\(\dfrac{31}{4}.\left(\dfrac{-3}{7}+\dfrac{5}{11}+\dfrac{\left(-4\right)}{7}+\dfrac{6}{11}\right)=\dfrac{31}{4}.0=0\)

Bình luận (1)
PB
Xem chi tiết
CT
7 tháng 4 2018 lúc 13:08

Chọn B.

Ta có  suy ra

Bình luận (0)
LY
Xem chi tiết
NL
27 tháng 2 2021 lúc 17:25

\(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

\(=\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}\)

\(=\dfrac{a^2+b^2+c^2}{2abc}\) (đpcm)

Bình luận (0)
NC
2 tháng 3 2021 lúc 15:33

a2 = b2 + c2 - 2bc.cosA

b2 = a2 + c2 - 2ac.cosB

c2 = a2 + b2 - 2ab.cosC

⇒ a2 + b2 + c2 = 2bc.cosA + 2ac.cosB + 2ab.cosC

⇒ VT =  \(\dfrac{2bc.cosA}{2abc}+\dfrac{2ab.cosC}{2abc}+\dfrac{2ac.cosB}{2abc}\)

⇒ VT = \(\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)

Bình luận (0)