AB=5, AC=7, BC = \(\sqrt{74}\)
biết tam giác ABC vuông ở A, tính tỉ số lượng giác của B và C
Cho tam giác ABC vuông tại A biết AC=14 cm,cot C=7÷24.Tính AB,BC và các tỉ số lượng giác còn lại của góc C.
\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{7}{24}\Rightarrow AB=\dfrac{14\cdot24}{7}=48\left(cm\right)\)
Áp dụng pytago:
\(BC=\sqrt{AB^2+AC^2}=50\left(cm\right)\)
\(\tan\widehat{C}=\dfrac{1}{\cot\widehat{C}}=\dfrac{24}{7}\\ \sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{48}{50}=\dfrac{24}{25}\\ \cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{14}{50}=\dfrac{7}{25}\)
Bài 7: a, Cho tam giác ABC vuông tại A có AB 3 AC 4 = và BC = 5. Tính độ dài AB, AC b, Tính độ dài cạnh huyền biết độ dài hai cạnh góc vuông là 6 và 7 c, Tính góc ở đỉnh của tam giác cân biết số đo góc ở đáy là 200 d, Tính số đo góc ở đáy tam giác cân biết số đo góc ở đỉnh là 600
b: Độ dài cạnh huyền là \(\sqrt{6^2+7^2}=\sqrt{85}\left(cm\right)\)
c: Số đo góc ở đỉnh là:
\(180-2\cdot20^0=140^0\)
d: Số đó góc ở đáy là:
\(\dfrac{180^0-60^0}{2}=60^0\)
Cho tam giác ABC vuông ở A, tanB = \(\sqrt{2}\) .
a) Tính tỉ số lượng giác của góc C.
b) Kẻ AH vuông góc với BC, biết AH = 2\(\sqrt{3}\) cm . Hãy tính các cạnh của tam giác ABC.
giúp e vs ạ
\(tanB=\sqrt{2}\Rightarrow\dfrac{AC}{AB}=\sqrt{2}\Rightarrow\dfrac{AC^2}{AB^2}=2\)
\(\Rightarrow\dfrac{AC^2}{AB^2}+1=3\Rightarrow\dfrac{AC^2+AB^2}{AB^2}=3\Rightarrow\dfrac{BC^2}{AB^2}=3\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}\)
Mà \(sinC=\dfrac{AB}{BC}\Rightarrow sinC=\dfrac{1}{\sqrt{3}}\)
\(sin^2C+cos^2C=1\Rightarrow\dfrac{1}{3}+cos^2C=1\Rightarrow cosC=\dfrac{\sqrt{6}}{3}\)
\(tanC=\dfrac{sinC}{cosC}=\dfrac{\sqrt{2}}{2}\)
b.
Trong tam giác vuông ACH:
\(sinC=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{sinC}=\dfrac{2\sqrt{3}}{\dfrac{1}{\sqrt{3}}}=6\left(cm\right)\)
Trong tam giác vuông ABC:
\(tanB=\dfrac{AC}{AB}\Rightarrow AB=\dfrac{AC}{tanB}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)
Áp dụng Pitago:
\(BC=\sqrt{AB^2+AC^2}=3\sqrt{6}\left(cm\right)\)
a: Xét ΔABC vuông tại A có
\(\tan\widehat{B}=\sqrt{2}\)
\(\Leftrightarrow AC=AB\cdot\sqrt{2}\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3\cdot AB^2\)
hay \(BC=AB\cdot\sqrt{3}\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{\sqrt{2}}{\sqrt{3}}=\dfrac{\sqrt{6}}{3}\)
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
\(\cot\widehat{C}=\sqrt{2}\)
Câu1: hãy tính các tỉ số lượng giác còn lại của góc a, biết:
a) sin a =0,8, b) cos a =5/13 , c) tga =4/5 , d) cotga =3
Câu 2: Cho tam giác ABC vuông tại A. Tìm các tỉ số lượng giác cảu góc B khi:
a) BC = 5cm, AB = 3cm
b) BC = 13cm, AC = 12cm
c) AC = 4cm, AB = 3cm
Câu 3: Cho tam giác ABC. Biết AB = 40cm, AC = 58 cm và BC =42cm.
a) Tam giác ABC là tam giác gì ? vì sao ?
b) Kẻ đường cao BH cảu tam giác ABC. Tính độ dài đoạn thẳng BH.
c) Tính tỉ số lượng giác cảu góc A. Từ đó, suy ra tỉ số lượng giác của góc C.
Câu 4: Cho tam giác DEF vuông tại D, đường cao DH. Biết DE = 7cm và EF = 25cm.
a) Tính độ dài của các đoạn thẳng DF,DH,EH và HF.
b) Tính tỉ số lượng giác của góc F.
1, Cho tam giác ABC vuông tại A. Biết AB = 7cm và AC = 21cm. Tính các tỉ số lượng giác của góc B và góc C
2, Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5xm
a) Chứng minh tam giác ABC vuông tại A
b) Tính góc B, C vào đường cao AH của tam giác
c) Tính diện tích của tam giác ABC
cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C
Chứng minh tam giác ABC có AB = a , BC= a\(\sqrt{3}\), va AC = a\(\sqrt{2}\). Chứng minh tam giác ABC vuông . Tính các tỉ số lượng giác của góc B và tính góc B . Suy ra cac ti so luong giac cua goc C
cho tam giác abc vuông tại A . tính tỉ số lượng giác của góc c trong các trường hợp sau a/ AC=8cm bc=17cm b/ ab=12cm Ac=12cm c/ AB=a BC=a√5
c: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC=2a\)
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{a}{a\sqrt{5}}=\dfrac{\sqrt{5}}{5}\)
\(\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{a}{2a}=\dfrac{1}{2}\)
\(\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{2a}{a}=2\)
Cho tam giác vuông ABC , A = 90 độ
a) AB = 3cm ,BC = 5 cm . Tính tỉ số lượng gác của góc B
b) AB = 5cm ,AC = 12 cm . Tính tỉ số lượng gác của góc C
Lời giải:
a. $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$\cos B=\frac{AB}{BC}=\frac{3}{5}$
$\sin B = \frac{AC}{BC}=\frac{4}{5}$
$\tan B = \frac{AC}{AB}=\frac{4}{3}$
$\cot B = \frac{AB}{AC}=\frac{3}{4}$
b.
$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm)
$\sin C = \frac{AB}{BC}=\frac{5}{13}$
$\cos C=\frac{AC}{BC}=\frac{12}{13}$
$\tan C=\frac{AB}{AC}=\frac{5}{12}$
$\cot C=\frac{AC}{AB}=\frac{12}{5}$
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3cm; BC = 5cm. a/ Tính AC, AH, HB, HC. b/ Tính các tỉ số lượng giác của góc B và tính góc C. c/ Vẽ HM vuông góc AB tại M; vẽ HN vuông góc AC tại N. Chứng minh: AM. AB = AN. AC.
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
cho tam giác ABC vuông tai A có AB =5cm,BC=13cm .a/tính AC .b/ viết tỉ số lượng giác của góc B và góc C
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
b: Xét ΔBAC vuông tại A có
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{5}{13}\)
\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{12}{5}\)
\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{5}{12}\)