Ẩn danh

Những câu hỏi liên quan
TN
Xem chi tiết
NJ
16 tháng 6 2017 lúc 9:18

cái j sao khó nhìn vậy

Bình luận (0)
NT
11 tháng 2 2022 lúc 22:22
KHÓOOOOOOOOOO QUÁAAAAAAA ĐIIIIIIIIIIIIIIIIIIII CHẾTTTTTTTTTTTTT
Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
NT
13 tháng 10 2023 lúc 14:03

ĐKXĐ: \(\left\{{}\begin{matrix}3x^2+5x+1>=0\\3x^2+5x-7>=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=\dfrac{-5+\sqrt{13}}{6}\\x< =\dfrac{-5-\sqrt{13}}{6}\end{matrix}\right.\\\left[{}\begin{matrix}x>=\dfrac{-5+\sqrt{109}}{6}\\x< =\dfrac{-5-\sqrt{109}}{6}\end{matrix}\right.\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x< =\dfrac{-5-\sqrt{109}}{6}\\x>=\dfrac{-5+\sqrt{109}}{6}\end{matrix}\right.\)

\(\sqrt{3x^2+5x+1}-\sqrt{3x^2+5x-7}=2\)

=>\(\sqrt{3x^2+5x+1}-3-\sqrt{3x^2+5x-7}+1=0\)

=>\(\dfrac{3x^2+5x+1-9}{\sqrt{3x^2+5x+1}+3}-\dfrac{3x^2+5x-7-1}{\sqrt{3x^2+5x-7}+1}=0\)

=>\(3x^2+5x-8=0\)

=>\(\left(3x+8\right)\left(x-1\right)=0\)

=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{8}{3}\left(nhận\right)\end{matrix}\right.\)

Bình luận (0)
EH
Xem chi tiết
VV
Xem chi tiết
AH
12 tháng 8 2023 lúc 23:52

Tìm min:

$F=3x^2+x-2=3(x^2+\frac{x}{3})-2$

$=3[x^2+\frac{x}{3}+(\frac{1}{6})^2]-\frac{25}{12}$

$=3(x+\frac{1}{6})^2-\frac{25}{12}\geq \frac{-25}{12}$

Vậy $F_{\min}=\frac{-25}{12}$. Giá trị này đạt tại $x+\frac{1}{6}=0$
$\Leftrightarrow x=\frac{-1}{6}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:54

Tìm min

$G=4x^2+2x-1=(2x)^2+2.2x.\frac{1}{2}+(\frac{1}{2})^2-\frac{5}{4}$

$=(2x+\frac{1}{2})^2-\frac{5}{4}\geq 0-\frac{5}{4}=\frac{-5}{4}$ (do $(2x+\frac{1}{2})^2\geq 0$ với mọi $x$)

Vậy $G_{\min}=\frac{-5}{4}$. Giá trị này đạt tại $2x+\frac{1}{2}=0$

$\Leftrightarrow x=\frac{-1}{4}$

Bình luận (0)
AH
12 tháng 8 2023 lúc 23:55

Tìm min

$H=5x^2-x+1=5(x^2-\frac{x}{5})+1$

$=5[x^2-\frac{x}{5}+(\frac{1}{10})^2]+\frac{19}{20}$

$=5(x-\frac{1}{10})^2+\frac{19}{20}\geq \frac{19}{20}$
Vậy $H_{\min}=\frac{19}{20}$. Giá trị này đạt tại $x-\frac{1}{10}=0$

$\Leftrightarrow x=\frac{1}{10}$

Bình luận (0)
PD
Xem chi tiết
NV
27 tháng 6 2016 lúc 9:15

Ta có: (3x - 5)(7 - 5x) + (5x + 2)(3x - 2) - 2 = 0

=> 21x - 15x2 - 35 + 25x + 15x2 - 10x + 6x - 4 - 2 = 0

=> 42x  - 41 = 0

=> 42x = 41

=> x = 41/42

Bình luận (0)
NK
Xem chi tiết
H24
5 tháng 2 2021 lúc 20:58

b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)

 Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)

c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)

\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)

  Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)

 

Bình luận (0)
H24
5 tháng 2 2021 lúc 20:18

a)(x-1)(5x+3)=(3x-8)(x-1)

\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0

\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)

\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)

Bình luận (0)
NT
5 tháng 2 2021 lúc 20:58

a) Ta có: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)

\(\Leftrightarrow5x^2+3x-5x-3=3x^2-3x-8x+8\)

\(\Leftrightarrow5x^2-2x-3=3x^2-11x+8\)

\(\Leftrightarrow5x^2-2x-3-3x^2+11x-8=0\)

\(\Leftrightarrow2x^2+9x-11=0\)

\(\Leftrightarrow2x^2+11x-2x-11=0\)

\(\Leftrightarrow x\left(2x+11\right)-\left(2x+11\right)=0\)

\(\Leftrightarrow\left(2x+11\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+11=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-11\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{11}{2};1\right\}\)

b) Ta có: \(3x\left(25x+15\right)-35\left(5x+3\right)=0\)

\(\Leftrightarrow3x\cdot5\cdot\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\Leftrightarrow\left(5x+3\right)\left(15x-35\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\15x-35=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\15x=35\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{7}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)

c) Ta có: \(\left(2-3x\right)\left(x-11\right)=\left(3x-2\right)\left(2-5x\right)\)

\(\Leftrightarrow2x-22-3x^2+33x=6x-15x^2-4+10x\)

\(\Leftrightarrow-3x^2+35x-22=-15x^2+16x-4\)

\(\Leftrightarrow-3x^2+35x-22+15x^2-16x+4=0\)

\(\Leftrightarrow12x^2+19x-18=0\)

\(\Leftrightarrow12x^2+27x-8x-18=0\)

\(\Leftrightarrow3x\left(4x+9\right)-2\left(4x+9\right)=0\)

\(\Leftrightarrow\left(4x+9\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+9=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-9\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{9}{4};\dfrac{2}{3}\right\}\)

Bình luận (2)
MN
Xem chi tiết
YN
31 tháng 12 2021 lúc 23:47

Answer:

\(6x^2-\left(2x+3\right)\left(3x-2\right)=7\)

\(\Rightarrow6x^2-\left(6x^2+9x-4x-6\right)=7\)

\(\Rightarrow6x^2-\left(6x^2+5x-6\right)=7\)

\(\Rightarrow6x^2-6x^2-5x+6=7\)

\(\Rightarrow-5x+6=7\)

\(\Rightarrow-5x=1\)

\(\Rightarrow x=\frac{-1}{5}\)

\(5x\left(12+7\right)-3x\left(80x-5\right)=-100\)

\(\Rightarrow5x.19-240x^2+15x=-100\)

\(\Rightarrow95x-240x^2+15x=-100\)

\(\Rightarrow-240x^2+110x+100=0\)

\(\Rightarrow-24x^2-11x-10=0\)

\(\Rightarrow24\left(x^2-\frac{11}{24}x+\frac{121}{2304}\right)-\frac{1081}{96}=0\)

\(\Rightarrow24\left(x-\frac{11}{48}\right)^2-\frac{1081}{96}=0\)

\(\Rightarrow24\left(x-\frac{11}{48}\right)^2=\frac{1081}{2304}\)

\(\Rightarrow\left(x-\frac{11}{48}\right)^2=\left(\frac{\pm\sqrt{1081}}{48}\right)^2\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{11}{48}=\frac{\sqrt{1081}}{48}\\x-\frac{11}{48}=\frac{-\sqrt{1081}}{48}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{1081}+11}{48}\\x=\frac{11-\sqrt{1081}}{48}\end{cases}}\)

\(\left(3x-5\right)\left(7-5x\right)-\left(5x-2\right)\left(2-3x\right)=4\)

\(\Rightarrow\left(21x-15x^2-35+25x\right)-\left(10x-15x^2-4+6x\right)-4=0\)

\(\Rightarrow36x-15x^2-35-16x+15x^2+4-4=0\)

\(\Rightarrow\left(-15x^2+15x^2\right)+\left(36x-16x\right)+\left(-35+4-4\right)=0\)

\(\Rightarrow30x-35=0\)

\(\Rightarrow x=\frac{7}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
TL
Xem chi tiết
HA
Xem chi tiết
NL
26 tháng 2 2021 lúc 19:25

a) \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)

\(TH_1:3x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

\(TH_2:-2x-7=0\)

\(\Leftrightarrow x=-\dfrac{7}{2}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)

b) \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow2x^3-2x^2-3x^2+3x=0\)

\(\Leftrightarrow2x^2\left(x-1\right)-3x\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(TH_1:x=0\)

\(TH_2:x-1=0\)

\(\Leftrightarrow x=1\)

\(TH_3:2x-3=0\)

\(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy pt có tập nghiệm \(S=\left\{0;1;\dfrac{3}{2}\right\}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(9x^2-16\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)-x\left(3x+4\right)=0\)

\(\Leftrightarrow\left(3x+4\right)\left(2x-4\right)=0\)

\(TH_1:3x+4=0\)

\(\Leftrightarrow x=-\dfrac{4}{3}\)

\(TH_2:2x-4=0\)

\(\Leftrightarrow x=2\)

Vậy pt có tập nghiệm \(S=\left\{-\dfrac{4}{3};2\right\}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Rightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x-9x=-6-16+12\)

\(\Leftrightarrow11x=-10\)

\(\Leftrightarrow x=-\dfrac{10}{11}\)

Vậy pt có nghiệm duy nhất \(x=-\dfrac{10}{11}\)

Bình luận (0)
H24
26 tháng 2 2021 lúc 19:40

a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow3x+1=5x+8\)

\(\Leftrightarrow3x-5x=8-1\)

\(\Leftrightarrow-2x=7\)

\(\Leftrightarrow x=\dfrac{-7}{2}\)

Vậy \(X=\dfrac{-7}{2}\)

b) Ta có: \(2x^3-5x^2+3x=0\)

\(\Leftrightarrow x\left(2x^2-5x+3\right)=0\)

\(\Leftrightarrow x\left[\left(2x^2-2x\right)-\left(3x-3\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\2x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x=1\) hoặc \(x=0\) hoặc \(x=\dfrac{3}{2}\)

c) \(9x^2-16-x\left(3x+4\right)=0\)

\(\Leftrightarrow9x^2-16-3x^2-4x=0\)

\(\Leftrightarrow6x^2-4x-16=0\)

\(\Leftrightarrow2\left(3x^2-2x-8\right)=0\)

\(\Leftrightarrow3x^2-6x+4x-8=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)

Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)

d) \(\dfrac{5x+4}{3}-1=\dfrac{3x-2}{4}\)

\(\Leftrightarrow\dfrac{20x+16}{12}-\dfrac{12}{12}=\dfrac{9x-6}{12}\)

\(\Leftrightarrow20x+16-12=9x-6\)

\(\Leftrightarrow20x+16-12-9x+6=0\)

\(\Leftrightarrow11x+10=0\)

\(\Leftrightarrow x=\dfrac{-10}{11}\)

Vậy \(x=\dfrac{-10}{11}\)

Bình luận (0)
NT
26 tháng 2 2021 lúc 22:04

a) Ta có: \(9x^2-1=\left(3x-1\right)\left(5x+8\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x-1\right)\left(5x+8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1-5x-8\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(-2x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\-2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=1\\-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{1}{3};-\dfrac{7}{2}\right\}\)

Bình luận (0)
MK
Xem chi tiết
NT
20 tháng 7 2022 lúc 20:16

a: \(\Leftrightarrow6x^2-6x^2+4x-9x+6=7\)

=>-5x=1

hay x=-1/5

b: \(\Leftrightarrow5x\left(12x+7\right)-3x\left(80x-5\right)=-100\)

\(\Leftrightarrow60x^2+35x-240x^2+15x=-100\)

\(\Leftrightarrow-180x^2+50x+100=0\)

hay \(x\in\left\{\dfrac{5+\sqrt{745}}{36};\dfrac{5-\sqrt{745}}{36}\right\}\)

c: \(\Leftrightarrow21x-15x^2-35+25x-\left(10x-15x^2-4+6x\right)=4\)

\(\Leftrightarrow-15x^2+46x-35+15x^2-16x+4=4\)

=>30x-31=4

=>30x=35

hay x=7/6

Bình luận (0)